@inproceedings{arsenos-siolas-2020-ntuaails,
title = "{NTUAAILS} at {S}em{E}val-2020 Task 11: Propaganda Detection and Classification with bi{LSTM}s and {ELM}o",
author = "Arsenos, Anastasios and
Siolas, Georgios",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.195/",
doi = "10.18653/v1/2020.semeval-1.195",
pages = "1495--1501",
abstract = "This paper describes the NTUAAILS submission for SemEval 2020 Task 11 Detection of Propaganda Techniques in News Articles. This task comprises of two different sub-tasks, namely A: Span Identification (SI), B: Technique Classification (TC). The goal for the SI sub-task is to identify specific fragments, in a given plain text, containing at least one propaganda technique. The TC sub-task aims to identify the applied propaganda technique in a given text fragment. A different model was trained for each sub-task. Our best performing system for the SI task consists of pre-trained ELMo word embeddings followed by residual bidirectional LSTM network. For the TC sub-task pre-trained word embeddings from GloVe fed to a bidirectional LSTM neural network. The models achieved rank 28 among 36 teams with F1 score of 0.335 and rank 25 among 31 teams with 0.463 F1 score for SI and TC sub-tasks respectively. Our results indicate that the proposed deep learning models, although relatively simple in architecture and fast to train, achieve satisfactory results in the tasks on hand."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arsenos-siolas-2020-ntuaails">
<titleInfo>
<title>NTUAAILS at SemEval-2020 Task 11: Propaganda Detection and Classification with biLSTMs and ELMo</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anastasios</namePart>
<namePart type="family">Arsenos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Siolas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the NTUAAILS submission for SemEval 2020 Task 11 Detection of Propaganda Techniques in News Articles. This task comprises of two different sub-tasks, namely A: Span Identification (SI), B: Technique Classification (TC). The goal for the SI sub-task is to identify specific fragments, in a given plain text, containing at least one propaganda technique. The TC sub-task aims to identify the applied propaganda technique in a given text fragment. A different model was trained for each sub-task. Our best performing system for the SI task consists of pre-trained ELMo word embeddings followed by residual bidirectional LSTM network. For the TC sub-task pre-trained word embeddings from GloVe fed to a bidirectional LSTM neural network. The models achieved rank 28 among 36 teams with F1 score of 0.335 and rank 25 among 31 teams with 0.463 F1 score for SI and TC sub-tasks respectively. Our results indicate that the proposed deep learning models, although relatively simple in architecture and fast to train, achieve satisfactory results in the tasks on hand.</abstract>
<identifier type="citekey">arsenos-siolas-2020-ntuaails</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.195</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.195/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1495</start>
<end>1501</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NTUAAILS at SemEval-2020 Task 11: Propaganda Detection and Classification with biLSTMs and ELMo
%A Arsenos, Anastasios
%A Siolas, Georgios
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F arsenos-siolas-2020-ntuaails
%X This paper describes the NTUAAILS submission for SemEval 2020 Task 11 Detection of Propaganda Techniques in News Articles. This task comprises of two different sub-tasks, namely A: Span Identification (SI), B: Technique Classification (TC). The goal for the SI sub-task is to identify specific fragments, in a given plain text, containing at least one propaganda technique. The TC sub-task aims to identify the applied propaganda technique in a given text fragment. A different model was trained for each sub-task. Our best performing system for the SI task consists of pre-trained ELMo word embeddings followed by residual bidirectional LSTM network. For the TC sub-task pre-trained word embeddings from GloVe fed to a bidirectional LSTM neural network. The models achieved rank 28 among 36 teams with F1 score of 0.335 and rank 25 among 31 teams with 0.463 F1 score for SI and TC sub-tasks respectively. Our results indicate that the proposed deep learning models, although relatively simple in architecture and fast to train, achieve satisfactory results in the tasks on hand.
%R 10.18653/v1/2020.semeval-1.195
%U https://aclanthology.org/2020.semeval-1.195/
%U https://doi.org/10.18653/v1/2020.semeval-1.195
%P 1495-1501
Markdown (Informal)
[NTUAAILS at SemEval-2020 Task 11: Propaganda Detection and Classification with biLSTMs and ELMo](https://aclanthology.org/2020.semeval-1.195/) (Arsenos & Siolas, SemEval 2020)
ACL