@inproceedings{ballapuram-2020-lmml,
title = "{LMML} at {S}em{E}val-2020 Task 7: {S}iamese Transformers for Rating Humor in Edited News Headlines",
author = "Ballapuram, Pramodith",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.134/",
doi = "10.18653/v1/2020.semeval-1.134",
pages = "1026--1032",
abstract = "This paper contains a description of my solution to the problem statement of SemEval 2020: Assessing the Funniness of Edited News Headlines. I propose a Siamese Transformer based approach, coupled with a Global Attention mechanism that makes use of contextual embeddings and focus words, to generate important features that are fed to a 2 layer perceptron to rate the funniness of the edited headline. I detail various experiments to show the performance of the system. The proposed approach outperforms a baseline Bi-LSTM architecture and finished 5th (out of 49 teams) in sub-task 1 and 4th (out of 32 teams) in sub-task 2 of the competition and was the best non-ensemble model in both tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ballapuram-2020-lmml">
<titleInfo>
<title>LMML at SemEval-2020 Task 7: Siamese Transformers for Rating Humor in Edited News Headlines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pramodith</namePart>
<namePart type="family">Ballapuram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper contains a description of my solution to the problem statement of SemEval 2020: Assessing the Funniness of Edited News Headlines. I propose a Siamese Transformer based approach, coupled with a Global Attention mechanism that makes use of contextual embeddings and focus words, to generate important features that are fed to a 2 layer perceptron to rate the funniness of the edited headline. I detail various experiments to show the performance of the system. The proposed approach outperforms a baseline Bi-LSTM architecture and finished 5th (out of 49 teams) in sub-task 1 and 4th (out of 32 teams) in sub-task 2 of the competition and was the best non-ensemble model in both tasks.</abstract>
<identifier type="citekey">ballapuram-2020-lmml</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.134</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.134/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1026</start>
<end>1032</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LMML at SemEval-2020 Task 7: Siamese Transformers for Rating Humor in Edited News Headlines
%A Ballapuram, Pramodith
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F ballapuram-2020-lmml
%X This paper contains a description of my solution to the problem statement of SemEval 2020: Assessing the Funniness of Edited News Headlines. I propose a Siamese Transformer based approach, coupled with a Global Attention mechanism that makes use of contextual embeddings and focus words, to generate important features that are fed to a 2 layer perceptron to rate the funniness of the edited headline. I detail various experiments to show the performance of the system. The proposed approach outperforms a baseline Bi-LSTM architecture and finished 5th (out of 49 teams) in sub-task 1 and 4th (out of 32 teams) in sub-task 2 of the competition and was the best non-ensemble model in both tasks.
%R 10.18653/v1/2020.semeval-1.134
%U https://aclanthology.org/2020.semeval-1.134/
%U https://doi.org/10.18653/v1/2020.semeval-1.134
%P 1026-1032
Markdown (Informal)
[LMML at SemEval-2020 Task 7: Siamese Transformers for Rating Humor in Edited News Headlines](https://aclanthology.org/2020.semeval-1.134/) (Ballapuram, SemEval 2020)
ACL