@inproceedings{daval-frerot-weis-2020-wmd,
title = "{WMD} at {S}em{E}val-2020 Tasks 7 and 11: Assessing Humor and Propaganda Using Unsupervised Data Augmentation",
author = "Daval-Frerot, Guillaume and
Weis, Yannick",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.246/",
doi = "10.18653/v1/2020.semeval-1.246",
pages = "1865--1874",
abstract = "In this work, we combine the state-of-the-art BERT architecture with the semi-supervised learning technique UDA in order to exploit unlabeled raw data to assess humor and detect propaganda in the tasks 7 and 11 of the SemEval-2020 competition. The use of UDA shows promising results with a systematic improvement of the performances over the four different subtasks, and even outperforms supervised learning with the additional labels of the Funlines dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="daval-frerot-weis-2020-wmd">
<titleInfo>
<title>WMD at SemEval-2020 Tasks 7 and 11: Assessing Humor and Propaganda Using Unsupervised Data Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guillaume</namePart>
<namePart type="family">Daval-Frerot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yannick</namePart>
<namePart type="family">Weis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we combine the state-of-the-art BERT architecture with the semi-supervised learning technique UDA in order to exploit unlabeled raw data to assess humor and detect propaganda in the tasks 7 and 11 of the SemEval-2020 competition. The use of UDA shows promising results with a systematic improvement of the performances over the four different subtasks, and even outperforms supervised learning with the additional labels of the Funlines dataset.</abstract>
<identifier type="citekey">daval-frerot-weis-2020-wmd</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.246</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.246/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1865</start>
<end>1874</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T WMD at SemEval-2020 Tasks 7 and 11: Assessing Humor and Propaganda Using Unsupervised Data Augmentation
%A Daval-Frerot, Guillaume
%A Weis, Yannick
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F daval-frerot-weis-2020-wmd
%X In this work, we combine the state-of-the-art BERT architecture with the semi-supervised learning technique UDA in order to exploit unlabeled raw data to assess humor and detect propaganda in the tasks 7 and 11 of the SemEval-2020 competition. The use of UDA shows promising results with a systematic improvement of the performances over the four different subtasks, and even outperforms supervised learning with the additional labels of the Funlines dataset.
%R 10.18653/v1/2020.semeval-1.246
%U https://aclanthology.org/2020.semeval-1.246/
%U https://doi.org/10.18653/v1/2020.semeval-1.246
%P 1865-1874
Markdown (Informal)
[WMD at SemEval-2020 Tasks 7 and 11: Assessing Humor and Propaganda Using Unsupervised Data Augmentation](https://aclanthology.org/2020.semeval-1.246/) (Daval-Frerot & Weis, SemEval 2020)
ACL