@inproceedings{zhou-li-2020-temporalteller,
title = "{T}emporal{T}eller at {S}em{E}val-2020 Task 1: Unsupervised Lexical Semantic Change Detection with Temporal Referencing",
author = "Zhou, Jinan and
Li, Jiaxin",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.27/",
doi = "10.18653/v1/2020.semeval-1.27",
pages = "222--231",
abstract = "This paper describes our TemporalTeller system for SemEval Task 1: Unsupervised Lexical Semantic Change Detection. We develop a unified framework for the common semantic change detection pipelines including preprocessing, learning word embeddings, calculating vector distances and determining threshold. We also propose Gamma Quantile Threshold to distinguish between changed and stable words. Based on our system, we conduct a comprehensive comparison among BERT, Skip-gram, Temporal Referencing and alignment-based methods. Evaluation results show that Skip-gram with Temporal Referencing achieves the best performance of 66.5{\%} classification accuracy and 51.8{\%} Spearman`s Ranking Correlation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-li-2020-temporalteller">
<titleInfo>
<title>TemporalTeller at SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection with Temporal Referencing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jinan</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaxin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our TemporalTeller system for SemEval Task 1: Unsupervised Lexical Semantic Change Detection. We develop a unified framework for the common semantic change detection pipelines including preprocessing, learning word embeddings, calculating vector distances and determining threshold. We also propose Gamma Quantile Threshold to distinguish between changed and stable words. Based on our system, we conduct a comprehensive comparison among BERT, Skip-gram, Temporal Referencing and alignment-based methods. Evaluation results show that Skip-gram with Temporal Referencing achieves the best performance of 66.5% classification accuracy and 51.8% Spearman‘s Ranking Correlation.</abstract>
<identifier type="citekey">zhou-li-2020-temporalteller</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.27</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.27/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>222</start>
<end>231</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TemporalTeller at SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection with Temporal Referencing
%A Zhou, Jinan
%A Li, Jiaxin
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F zhou-li-2020-temporalteller
%X This paper describes our TemporalTeller system for SemEval Task 1: Unsupervised Lexical Semantic Change Detection. We develop a unified framework for the common semantic change detection pipelines including preprocessing, learning word embeddings, calculating vector distances and determining threshold. We also propose Gamma Quantile Threshold to distinguish between changed and stable words. Based on our system, we conduct a comprehensive comparison among BERT, Skip-gram, Temporal Referencing and alignment-based methods. Evaluation results show that Skip-gram with Temporal Referencing achieves the best performance of 66.5% classification accuracy and 51.8% Spearman‘s Ranking Correlation.
%R 10.18653/v1/2020.semeval-1.27
%U https://aclanthology.org/2020.semeval-1.27/
%U https://doi.org/10.18653/v1/2020.semeval-1.27
%P 222-231
Markdown (Informal)
[TemporalTeller at SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection with Temporal Referencing](https://aclanthology.org/2020.semeval-1.27/) (Zhou & Li, SemEval 2020)
ACL