@inproceedings{socha-2020-ks,
title = "{KS}@{LTH} at {S}em{E}val-2020 Task 12: Fine-tuning Multi- and Monolingual Transformer Models for Offensive Language Detection",
author = "Socha, Kasper",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.270/",
doi = "10.18653/v1/2020.semeval-1.270",
pages = "2045--2053",
abstract = "This paper describes the KS@LTH system for SemEval-2020 Task 12 OffensEval2: Multilingual Offensive Language Identification in Social Media. We compare mono- and multilingual models based on fine-tuning pre-trained transformer models for offensive language identification in Arabic, Greek, English and Turkish. For Danish, we explore the possibility of fine-tuning a model pre-trained on a similar language, Swedish, and additionally also cross-lingual training together with English."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="socha-2020-ks">
<titleInfo>
<title>KS@LTH at SemEval-2020 Task 12: Fine-tuning Multi- and Monolingual Transformer Models for Offensive Language Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kasper</namePart>
<namePart type="family">Socha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the KS@LTH system for SemEval-2020 Task 12 OffensEval2: Multilingual Offensive Language Identification in Social Media. We compare mono- and multilingual models based on fine-tuning pre-trained transformer models for offensive language identification in Arabic, Greek, English and Turkish. For Danish, we explore the possibility of fine-tuning a model pre-trained on a similar language, Swedish, and additionally also cross-lingual training together with English.</abstract>
<identifier type="citekey">socha-2020-ks</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.270</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.270/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2045</start>
<end>2053</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KS@LTH at SemEval-2020 Task 12: Fine-tuning Multi- and Monolingual Transformer Models for Offensive Language Detection
%A Socha, Kasper
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F socha-2020-ks
%X This paper describes the KS@LTH system for SemEval-2020 Task 12 OffensEval2: Multilingual Offensive Language Identification in Social Media. We compare mono- and multilingual models based on fine-tuning pre-trained transformer models for offensive language identification in Arabic, Greek, English and Turkish. For Danish, we explore the possibility of fine-tuning a model pre-trained on a similar language, Swedish, and additionally also cross-lingual training together with English.
%R 10.18653/v1/2020.semeval-1.270
%U https://aclanthology.org/2020.semeval-1.270/
%U https://doi.org/10.18653/v1/2020.semeval-1.270
%P 2045-2053
Markdown (Informal)
[KS@LTH at SemEval-2020 Task 12: Fine-tuning Multi- and Monolingual Transformer Models for Offensive Language Detection](https://aclanthology.org/2020.semeval-1.270/) (Socha, SemEval 2020)
ACL