@inproceedings{liao-etal-2020-ynu,
title = "{YNU}-{HPCC} at {S}em{E}val-2020 Task 10: Using a Multi-granularity Ordinal Classification of the {B}i{LSTM} Model for Emphasis Selection",
author = "Liao, Dawei and
Wang, Jin and
Zhang, Xuejie",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.224/",
doi = "10.18653/v1/2020.semeval-1.224",
pages = "1710--1715",
abstract = "In this study, we propose a multi-granularity ordinal classification method to address the problem of emphasis selection. In detail, the word embedding is learned from Embeddings from Language Model (ELMO) to extract feature vector representation. Then, the ordinal classifica-tions are implemented on four different multi-granularities to approximate the continuous em-phasize values. Comparative experiments were conducted to compare the model with baseline in which the problem is transformed to label distribution problem."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-etal-2020-ynu">
<titleInfo>
<title>YNU-HPCC at SemEval-2020 Task 10: Using a Multi-granularity Ordinal Classification of the BiLSTM Model for Emphasis Selection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dawei</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this study, we propose a multi-granularity ordinal classification method to address the problem of emphasis selection. In detail, the word embedding is learned from Embeddings from Language Model (ELMO) to extract feature vector representation. Then, the ordinal classifica-tions are implemented on four different multi-granularities to approximate the continuous em-phasize values. Comparative experiments were conducted to compare the model with baseline in which the problem is transformed to label distribution problem.</abstract>
<identifier type="citekey">liao-etal-2020-ynu</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.224</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.224/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1710</start>
<end>1715</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at SemEval-2020 Task 10: Using a Multi-granularity Ordinal Classification of the BiLSTM Model for Emphasis Selection
%A Liao, Dawei
%A Wang, Jin
%A Zhang, Xuejie
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F liao-etal-2020-ynu
%X In this study, we propose a multi-granularity ordinal classification method to address the problem of emphasis selection. In detail, the word embedding is learned from Embeddings from Language Model (ELMO) to extract feature vector representation. Then, the ordinal classifica-tions are implemented on four different multi-granularities to approximate the continuous em-phasize values. Comparative experiments were conducted to compare the model with baseline in which the problem is transformed to label distribution problem.
%R 10.18653/v1/2020.semeval-1.224
%U https://aclanthology.org/2020.semeval-1.224/
%U https://doi.org/10.18653/v1/2020.semeval-1.224
%P 1710-1715
Markdown (Informal)
[YNU-HPCC at SemEval-2020 Task 10: Using a Multi-granularity Ordinal Classification of the BiLSTM Model for Emphasis Selection](https://aclanthology.org/2020.semeval-1.224/) (Liao et al., SemEval 2020)
ACL