@inproceedings{ou-li-2020-ynu-oxz,
title = "{YNU}{\_}oxz at {S}em{E}val-2020 Task 12: Bidirectional {GRU} with Capsule for Identifying Multilingual Offensive Language",
author = "Ou, Xiaozhi and
Li, Hongling",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.300/",
doi = "10.18653/v1/2020.semeval-1.300",
pages = "2251--2257",
abstract = "This article describes the system submitted to SemEval-2020 Task 12 OffensEval 2: Multilingual Offensive Language Recognition in Social Media. The task is to classify offensive language in social media. The shared task contains five languages (English, Greek, Arabic, Danish, and Turkish) and three subtasks. We only participated in subtask A of English to identify offensive language. To solve this task, we proposed a system based on a Bidirectional Gated Recurrent Unit (Bi-GRU) with a Capsule model. Finally, we used the K-fold approach for ensemble. Our model achieved a Macro-average F1 score of 0.90969 (ranked 27/85) in subtask A."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ou-li-2020-ynu-oxz">
<titleInfo>
<title>YNU_oxz at SemEval-2020 Task 12: Bidirectional GRU with Capsule for Identifying Multilingual Offensive Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaozhi</namePart>
<namePart type="family">Ou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This article describes the system submitted to SemEval-2020 Task 12 OffensEval 2: Multilingual Offensive Language Recognition in Social Media. The task is to classify offensive language in social media. The shared task contains five languages (English, Greek, Arabic, Danish, and Turkish) and three subtasks. We only participated in subtask A of English to identify offensive language. To solve this task, we proposed a system based on a Bidirectional Gated Recurrent Unit (Bi-GRU) with a Capsule model. Finally, we used the K-fold approach for ensemble. Our model achieved a Macro-average F1 score of 0.90969 (ranked 27/85) in subtask A.</abstract>
<identifier type="citekey">ou-li-2020-ynu-oxz</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.300</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.300/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2251</start>
<end>2257</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU_oxz at SemEval-2020 Task 12: Bidirectional GRU with Capsule for Identifying Multilingual Offensive Language
%A Ou, Xiaozhi
%A Li, Hongling
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F ou-li-2020-ynu-oxz
%X This article describes the system submitted to SemEval-2020 Task 12 OffensEval 2: Multilingual Offensive Language Recognition in Social Media. The task is to classify offensive language in social media. The shared task contains five languages (English, Greek, Arabic, Danish, and Turkish) and three subtasks. We only participated in subtask A of English to identify offensive language. To solve this task, we proposed a system based on a Bidirectional Gated Recurrent Unit (Bi-GRU) with a Capsule model. Finally, we used the K-fold approach for ensemble. Our model achieved a Macro-average F1 score of 0.90969 (ranked 27/85) in subtask A.
%R 10.18653/v1/2020.semeval-1.300
%U https://aclanthology.org/2020.semeval-1.300/
%U https://doi.org/10.18653/v1/2020.semeval-1.300
%P 2251-2257
Markdown (Informal)
[YNU_oxz at SemEval-2020 Task 12: Bidirectional GRU with Capsule for Identifying Multilingual Offensive Language](https://aclanthology.org/2020.semeval-1.300/) (Ou & Li, SemEval 2020)
ACL