@inproceedings{mendbayar-aono-2020-kde,
title = "{KDE} {S}ense{F}orce at {S}em{E}val-2020 Task 4: Exploiting {BERT} for Commonsense Validation and Explanation",
author = "Mendbayar, Khanddorj and
Aono, Masaki",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.68/",
doi = "10.18653/v1/2020.semeval-1.68",
pages = "551--555",
abstract = "Using a natural language understanding system for commonsense comprehension is getting increasing attention from researchers. Current multi-purpose state-of-the-art models suffer on commonsense validation and explanation tasks. We have adopted one of the state-of-the-art models and proposing a method to boost the performance of the model in commonsense related tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mendbayar-aono-2020-kde">
<titleInfo>
<title>KDE SenseForce at SemEval-2020 Task 4: Exploiting BERT for Commonsense Validation and Explanation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Khanddorj</namePart>
<namePart type="family">Mendbayar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaki</namePart>
<namePart type="family">Aono</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Using a natural language understanding system for commonsense comprehension is getting increasing attention from researchers. Current multi-purpose state-of-the-art models suffer on commonsense validation and explanation tasks. We have adopted one of the state-of-the-art models and proposing a method to boost the performance of the model in commonsense related tasks.</abstract>
<identifier type="citekey">mendbayar-aono-2020-kde</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.68</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.68/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>551</start>
<end>555</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KDE SenseForce at SemEval-2020 Task 4: Exploiting BERT for Commonsense Validation and Explanation
%A Mendbayar, Khanddorj
%A Aono, Masaki
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F mendbayar-aono-2020-kde
%X Using a natural language understanding system for commonsense comprehension is getting increasing attention from researchers. Current multi-purpose state-of-the-art models suffer on commonsense validation and explanation tasks. We have adopted one of the state-of-the-art models and proposing a method to boost the performance of the model in commonsense related tasks.
%R 10.18653/v1/2020.semeval-1.68
%U https://aclanthology.org/2020.semeval-1.68/
%U https://doi.org/10.18653/v1/2020.semeval-1.68
%P 551-555
Markdown (Informal)
[KDE SenseForce at SemEval-2020 Task 4: Exploiting BERT for Commonsense Validation and Explanation](https://aclanthology.org/2020.semeval-1.68/) (Mendbayar & Aono, SemEval 2020)
ACL