@inproceedings{mboning-tchiaze-nouvel-2020-nlu,
title = "{NLU}-Co at {S}em{E}val-2020 Task 5: {NLU}/{SVM} Based Model Apply Tocharacterise and Extract Counterfactual Items on Raw Data",
author = "Mboning Tchiaze, Elvis and
Nouvel, Damien",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.87/",
doi = "10.18653/v1/2020.semeval-1.87",
pages = "670--676",
abstract = "In this article, we try to solve the problem of classification of counterfactual statements and extraction of antecedents/consequences in raw data, by mobilizing on one hand Support vector machine (SVMs) and on the other hand Natural Language Understanding (NLU) infrastructures available on the market for conversational agents. Our experiments allowed us to test different pipelines of two known platforms (Snips NLU and Rasa NLU). The results obtained show that a Rasa NLU pipeline, built with a well-preprocessed dataset and tuned algorithms, allows to model accurately the structure of a counterfactual event, in order to facilitate the identification and the extraction of its components."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mboning-tchiaze-nouvel-2020-nlu">
<titleInfo>
<title>NLU-Co at SemEval-2020 Task 5: NLU/SVM Based Model Apply Tocharacterise and Extract Counterfactual Items on Raw Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elvis</namePart>
<namePart type="family">Mboning Tchiaze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Damien</namePart>
<namePart type="family">Nouvel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this article, we try to solve the problem of classification of counterfactual statements and extraction of antecedents/consequences in raw data, by mobilizing on one hand Support vector machine (SVMs) and on the other hand Natural Language Understanding (NLU) infrastructures available on the market for conversational agents. Our experiments allowed us to test different pipelines of two known platforms (Snips NLU and Rasa NLU). The results obtained show that a Rasa NLU pipeline, built with a well-preprocessed dataset and tuned algorithms, allows to model accurately the structure of a counterfactual event, in order to facilitate the identification and the extraction of its components.</abstract>
<identifier type="citekey">mboning-tchiaze-nouvel-2020-nlu</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.87</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.87/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>670</start>
<end>676</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NLU-Co at SemEval-2020 Task 5: NLU/SVM Based Model Apply Tocharacterise and Extract Counterfactual Items on Raw Data
%A Mboning Tchiaze, Elvis
%A Nouvel, Damien
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F mboning-tchiaze-nouvel-2020-nlu
%X In this article, we try to solve the problem of classification of counterfactual statements and extraction of antecedents/consequences in raw data, by mobilizing on one hand Support vector machine (SVMs) and on the other hand Natural Language Understanding (NLU) infrastructures available on the market for conversational agents. Our experiments allowed us to test different pipelines of two known platforms (Snips NLU and Rasa NLU). The results obtained show that a Rasa NLU pipeline, built with a well-preprocessed dataset and tuned algorithms, allows to model accurately the structure of a counterfactual event, in order to facilitate the identification and the extraction of its components.
%R 10.18653/v1/2020.semeval-1.87
%U https://aclanthology.org/2020.semeval-1.87/
%U https://doi.org/10.18653/v1/2020.semeval-1.87
%P 670-676
Markdown (Informal)
[NLU-Co at SemEval-2020 Task 5: NLU/SVM Based Model Apply Tocharacterise and Extract Counterfactual Items on Raw Data](https://aclanthology.org/2020.semeval-1.87/) (Mboning Tchiaze & Nouvel, SemEval 2020)
ACL