@inproceedings{elsahar-etal-2021-self,
title = "Self-Supervised and Controlled Multi-Document Opinion Summarization",
author = "Elsahar, Hady and
Coavoux, Maximin and
Rozen, Jos and
Gall{\'e}, Matthias",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.141/",
doi = "10.18653/v1/2021.eacl-main.141",
pages = "1646--1662",
abstract = "We address the problem of unsupervised abstractive summarization of collections of user generated reviews through self-supervision and control. We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents. This setting makes training simpler than previous approaches by relying only on standard log-likelihood loss and mainstream models. We address the problem of hallucinations through the use of control codes, to steer the generation towards more coherent and relevant summaries."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elsahar-etal-2021-self">
<titleInfo>
<title>Self-Supervised and Controlled Multi-Document Opinion Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hady</namePart>
<namePart type="family">Elsahar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximin</namePart>
<namePart type="family">Coavoux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jos</namePart>
<namePart type="family">Rozen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Gallé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address the problem of unsupervised abstractive summarization of collections of user generated reviews through self-supervision and control. We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents. This setting makes training simpler than previous approaches by relying only on standard log-likelihood loss and mainstream models. We address the problem of hallucinations through the use of control codes, to steer the generation towards more coherent and relevant summaries.</abstract>
<identifier type="citekey">elsahar-etal-2021-self</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.141</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.141/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>1646</start>
<end>1662</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-Supervised and Controlled Multi-Document Opinion Summarization
%A Elsahar, Hady
%A Coavoux, Maximin
%A Rozen, Jos
%A Gallé, Matthias
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F elsahar-etal-2021-self
%X We address the problem of unsupervised abstractive summarization of collections of user generated reviews through self-supervision and control. We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents. This setting makes training simpler than previous approaches by relying only on standard log-likelihood loss and mainstream models. We address the problem of hallucinations through the use of control codes, to steer the generation towards more coherent and relevant summaries.
%R 10.18653/v1/2021.eacl-main.141
%U https://aclanthology.org/2021.eacl-main.141/
%U https://doi.org/10.18653/v1/2021.eacl-main.141
%P 1646-1662
Markdown (Informal)
[Self-Supervised and Controlled Multi-Document Opinion Summarization](https://aclanthology.org/2021.eacl-main.141/) (Elsahar et al., EACL 2021)
ACL