
Help Center Article

PASSWORD MANAGER  DEVELOPER TOOLS  CLI

Password Manager CLI

View in the help center:

https://bitwarden.com/help/cli/

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 1 of 33

https://bitwarden.com/help/cli/

Password Manager CLI

The Bitwarden command-line interface (CLI) is a powerful, fully-featured tool for accessing and managing your vault. Most features that you

find in other Bitwarden client applications (desktop, browser extension, etc.) are available from the CLI.

Bitwarden CLI

The Bitwarden CLI is self-documented. From the command line, learn about the available commands using:

Or, pass --help as an option on any bw command to see available options and examples:

Bash

bw --help

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 2 of 33

Most information you'll need can be accessed using --help , however this article replicates all that information and goes into greater depth

on some topics.

The CLI can be used cross-platform on Windows, macOS, and Linux distributions. To download and install the Bitwarden CLI:

 Note

For arm64 devices, install the CLI using npm .

⇒Native Executable

Natively packaged versions of the CLI are available for each platform and have no dependencies. Download using one of these links:

Note that, when using the downloaded native executable, you'll need to add the executable to your PATH or else run commands from the

directory the file is downloaded to.

 Tip

In Linux and UNIX systems, you might get a Permission denied message. If you do, grant permission by running:

Bash

bw list --help

bw move --help

Download and install

Windows x64

macOS x64

Linux x64

Bash

chmod +x </path/to/executable>

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 3 of 33

https://bitwarden.com/download/?app=cli&platform=windows
https://bitwarden.com/download/?app=cli&platform=macos
https://bitwarden.com/download/?app=cli&platform=linux

For each bundle of the Password Manager CLI available on GitHub, there is an OSS (e.g. bw-oss-windows-2024.12.0.zip) and non-

OSS build (e.g. bw-windows-2024.12.0.zip). The non-OSS version is the default package distributed on distribution platforms and

includes features under a non-OSS license, such as device approval commands, that the OSS version lacks.

 Tip

The Bitwarden Password Manager CLI build pipeline creates SHA-256 checksum files that are available on GitHub. Learn how to

validate checksums for the CLI.

⇒NPM

If you have Node.js installed on your system, you can install the CLI using NPM. Installing with NPM is the simplest way to keep your

installation up-to-date and should be the preferred method for those already comfortable with NPM:

View the package on npmjs.org.

 Note

Installing the Bitwarden CLI on Linux systems using npm may require the build-essential dependency (or distribution equivalent)

to be installed first. For example:

⇒Chocolatey

To install with Chocolatey:

View the package on community.chocolatey.org.

Bash

npm install -g @bitwarden/cli

Plain Text

apt install build-essential

Bash

choco install bitwarden-cli

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 4 of 33

https://bitwarden.com/help/security-faqs/#tab-cli-4iwx6mhPS3Bgu3eLpNthUw/
https://bitwarden.com/help/security-faqs/#tab-cli-4iwx6mhPS3Bgu3eLpNthUw/
https://bitwarden.com/help/security-faqs/#tab-cli-4iwx6mhPS3Bgu3eLpNthUw/
https://www.npmjs.com/package/@bitwarden/cli
https://chocolatey.org/packages/bitwarden-cli

⇒Snap

To install with snap:

View the package on snapcraft.io.

⇒Flatpak

The Bitwarden CLI is included with the Flatpak desktop app download. Install the Flatpak:

View the package on Flathub.

Run CLI commands using the following:

Before logging in, make sure your CLI is connected to the correct server (for example, EU cloud or self-hosted) using the config command (learn

more). There are three methods for logging in to the Bitwarden CLI using the login command, each of which is suited to different

situations. Please review the following options to determine which method to use:

Bash

sudo snap install bw

Bash

flatpak install flathub com.bitwarden.desktop

Bash

flatpak run --command=bw com.bitwarden.desktop <command>

use a shell alias to authorize a session

alias bw "flatpak run --command=bw com.bitwarden.desktop"

bw <command>

Log in

Using email and master password

Using an API key

Using SSO

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 5 of 33

https://snapcraft.io/bw
https://flathub.org/apps/com.bitwarden.desktop
https://bitwarden.com/help/server-geographies/

 Tip

No matter which option you use, a master password will be required to unlock the client in order to access data with a session

key. The email and master password option will authenticate your identity and generate a session key simultaneously, however the

API key or SSO will require you subsequent use of the unlock command to generate a session key if you will be working with

data directly.

Users who don't have master passwords, for example as a result of joining an organization using trusted devices, will not be able to

access data using the CLI. There are, however, a few commands that do not require decrypted data and therefore can be used

without a master password, including config , encode , generate , update , and status .

Logging in with email and password is recommended for interactive sessions. To log in with email and password:

This will initiate a prompt for your Email Address, Master Password, and (if enabled) at Two-step Login code. The CLI currently supports two-

step login via authenticator, email, or Yubikey.

You can string these factors together into a single command as in the following example, however this isn't recommended for security reasons:

See Enums for two-step login <method> values.

 Tip

Getting prompted for additional authentication or getting a Your authentication request appears to be coming from
a bot. error? Use your API Key client_secret to answer the authentication challenge. Learn more.

Logging in with the personal API key is recommended for automated workflows, for providing access to an external application, or if your

account uses a 2FA method not supported by the CLI (FIDO2 or Duo). To log in with the API key:

Using email and password

Bash

bw login

Bash

bw login [email] [password] --method <method> --code <code>

Using an API key

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 6 of 33

https://bitwarden.com/help/about-trusted-devices/#impact-on-master-passwords
https://bitwarden.com/help/setup-two-step-login/
https://bitwarden.com/help/setup-two-step-login-authenticator/
https://bitwarden.com/help/setup-two-step-login-email/
https://bitwarden.com/help/setup-two-step-login-yubikey/
https://bitwarden.com/help/cli-auth-challenges/
https://bitwarden.com/help/personal-api-key/

This will initiate a prompt for your personal client_id and client_secret . Once your session is authenticated using these values,

you can use the unlock command. Learn more.

 Tip

If your organization requires SSO, you can still use --apikey to log in to the CLI.

Using API key environment variables

In scenarios where automated work is being done with the Bitwarden CLI, you can save environment variables to prevent the need for manual

intervention at authentication.

Logging in with SSO is recommended if an organization requires SSO authentication. To log in with SSO:

This will initiate the SSO authentication flow in your web browser. Once your session is authenticated, you can use the unlock command.

Learn more.

Bash

bw login --apikey

Environment variable name Required value

BW_CLIENTID client_id

BW_CLIENTSECRET client_secret

Using SSO

Bash

bw login --sso

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 7 of 33

https://bitwarden.com/help/policies/#single-sign-on-authentication
https://bitwarden.com/help/about-sso/
https://bitwarden.com/help/using-sso/

 Tip

If your organization requires SSO, you may alternatively use --apikey to log in to the CLI.

Like using account switching on other Bitwarden apps, the CLI has the ability to log in to multiple accounts simultaneously using the

BITWARDENCLI_APPDATA_DIR environment variable pointing to the location of a bw configuration file, usually named data.json .

You can, for example, set aliases in a .bashrc profile for two separate configurations:

Using this example, you could then use login to two accounts by running first source /path/to/.bashrc , followed by bw-personal
login and bw-work login .

Using an API key or SSO to log in will require you to follow-up the login command with an explicit bw unlock if you'll be working with

vault data directly.

Unlocking your vault generates a session key which acts as a decryption key used to interact with data in your vault. The session key must be

used to perform any command that touches vault data (for example, list , get , edit). Session keys are valid until invalidated using

bw lock or bw logout , however they will not persist if you open a new terminal window. Generate a new session key at any time

using:

When you're finished, always end your session using the bw lock command.

You can use the --passwordenv <passwordenv> or --passwordfile <passwordfile> options with bw unlock to retrieve

your master password rather than enter it manually, for example:

Log in to multiple accounts

Bash

alias bw-personal="BITWARDENCLI_APPDATA_DIR=~/.config/Bitwarden\ CLI\ Personal /path/to/bw $@"

alias bw-work="BITWARDENCLI_APPDATA_DIR=~/.config/Bitwarden\ CLI\ Work /path/to/bw $@"

Unlock

Bash

bw unlock

Unlock options

1. The following will look for an environment variable BW_PASSWORD . If BW_PASSWORD is non-empty and has correct values, the CLI will

successfully unlock and return a session key:

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 8 of 33

https://bitwarden.com/help/policies/#single-sign-on-authentication
https://bitwarden.com/help/account-switching/

Warning

If you use the --passwordfile option, protect your password file by locking access down to only the user who needs to run

bw unlock and only providing read access to that user.

When you unlock your vault using bw login with email and password or bw unlock , the CLI will return both an export
BW_SESSION (Bash) and env:BW_SESSION (PowerShell) command, including your session key. Copy and paste the relevant entry to

save the required environment variable.

With the BW_SESSION environment variable set, bw commands will reference that variable and can be run cleanly, for example:

Alternatively, if you don't set the environment variable, you can pass the session key as an option with each bw command:

Bash

bw unlock --passwordenv BW_PASSWORD

2. The following will look for the file ~Users/Me/Documents/mp.txt (which must have your master password as the first line). If the

file is non-empty and has a correct value, the CLI will successfully unlock and return a session key:

Bash

bw unlock --passwordfile ~/Users/Me/Documents/mp.txt

Using a session key

Bash

export BW_SESSION="5PBYGU+5yt3RHcCjoeJKx/wByU34vokGRZjXpSH7Ylo8w=="

bw list items

Bash

bw list items --session "5PBYGU+5yt3RHcCjoeJKx/wByU34vokGRZjXpSH7Ylo8w=="

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 9 of 33

 Tip

When you're finished, always end your session using the bw lock or bw logout commands. This will invalidate the active

session key.

The create command creates a new object (item , attachment , and more) in your vault:

The create command takes encoded JSON. A typical workflow for creating an object might look something like:

For example:

or

Upon successful creation, the newly created object will be returned as JSON.

Core Commands

create

Bash

bw create (item|attachment|folder|org-collection) <encodedJson> [options]

1. Use the get template command (see get core commands for details) to output the appropriate JSON template for the object type.

2. Use a command-line JSON processor like jq to manipulate the outputted template as required.

3. Use the encode command (see details) to encode the manipulated JSON.

4. Use the create command to create an object from the encoded JSON.

Bash

bw get template folder | jq '.name="My First Folder"' | bw encode | bw create folder

Bash

bw get template item | jq ".name=\"My Login Item\" | .login=$(bw get template item.login | jq '.use

rname="jdoe" | .password="myp@ssword123"')" | bw encode | bw create item

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 10 of 33

https://stedolan.github.io/jq/

create other item types

The create command defaults to creating a login item, but you can use a command-line JSON processor like jq to change a .type=
attribute to create other item types:

For example, the following command will create a secure note:

 Note

Notice in the above example that Secure Notes require a sub-template (.secureNote.type). You can view item type sub-

templates using bw get template (see here for details).

create attachment

The create attachment command attaches a file to an existing item.

Unlike other create operations, you don’t need to use a JSON processor or encode to create an attachment. Instead, use the --
file option to specify the file to attach and the --itemid option to specify the item to attach it to. For example:

Name Value

Login .type=1

Secure note .type=2

Card .type=3

Identity .type=4

Bash

bw get template item | jq '.type = 2 | .secureNote.type = 0 | .notes = "Contents of my Secure Not

e." | .name = "My Secure Note"' | bw encode | bw create item

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 11 of 33

https://stedolan.github.io/jq/
https://bitwarden.com/help/managing-items/

 Tip

If you don’t know the exact itemid you want to use, use bw get item <search-term> to return the item (see details),

including its id .

The get command retrieves a single object (item , username , password , and more) from your vault:

The get command takes an item id or string for its argument. If you use a string (for example, anything other than an

exact id), get will search your vault objects for one with a value that matches. For example, the following command would return a

Github password:

 Note

The get command can only return one result, so you should use specific search terms. If multiple results are found, the CLI will

return an error.

get attachment

The get attachment command downloads a file attachment:

Bash

bw create attachment --file ./path/to/file --itemid 16b15b89-65b3-4639-ad2a-95052a6d8f66

get

Bash

bw get (item|username|password|uri|totp|exposed|attachment|folder|collection|organization|org-colle

ction|template|fingerprint) <id> [options]

Bash

bw get password Github

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 12 of 33

The get attachment command takes a filename and exact id . By default, get attachment will download the attachment

to the current working directory. You can use the --output option to specify a different output directory, for example:

 Note

When using --output , the path must end a forward slash (/) to specify a directory or a filename

(/Users/myaccount/Pictures/photo.png).

get notes

The get notes command retrieves the note for any vault item:

The get notes command takes an exact item id or string. If you use a string (for example, anything other than an exact id), get
notes will search your vault objects for one with a value that matches. For example, the following command would return a Github note:

get template

The get template command returns the expected JSON formatting for an object (item , item.field , item.login , and

more):

Bash

bw get attachment <filename> --itemid <id>

Bash

bw get attachment photo.png --itemid 99ee88d2-6046-4ea7-92c2-acac464b1412 --output /Users/myaccoun

t/Pictures/

Bash

bw get notes <id>

Bash

bw get notes Github

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 13 of 33

While you can use get template to output the format to your screen, the most common use-case is to pipe the output into a bw
create operation, using a command-line JSON processor like jq and bw encode to manipulate the values retrieved from the template,

for example:

 Note

Any item.xxx template should be used as a sub-object to an item template, for example:

get fingerprint

Retrieve the fingerprint phrase of a user. You may specify userId directly, or use the shortcut me to get your own fingerprint

phrase:

Bash

bw get template (item|item.field|item.login|item.login.uri|item.card|item.identity|item.securenote|

folder|collection|item-collections|org-collection)

Bash

bw get template folder | jq '.name="My First Folder"' | bw encode | bw create folder

Bash

bw get template item | jq ".name=\"My Login Item\" | .login=$(bw get template item.login | j

q '.username="jdoe" | .password="myp@ssword123"')" | bw encode | bw create item

Plain Text

bw get fingerprint <userId>

Plain Text

bw get fingerprint me

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 14 of 33

https://stedolan.github.io/jq/

The edit command edits an object (item , item-collections , etc.) in your vault:

The edit command takes an exact id (the object to edit) and encoded JSON (edits to be made). A typical workflow might look

something like:

For example, to edit the password of a login item:

Or, to edit the collection(s) an item is in:

Or, to edit a collection:

edit

Bash

bw edit (item|item-collections|folder|org-collection) <id> [encodedJson] [options]

1. Use the get command (see details) to output the object to edit.

2. Use a command-line JSON processor like jq to manipulate the outputted object as required.

3. Use the encode command (see details) to encode the manipulated JSON.

4. Use the edit command (including the object id) to edit the object.

Bash

bw get item 7ac9cae8-5067-4faf-b6ab-acfd00e2c328 | jq '.login.password="newp@ssw0rd"' | bw encode |

bw edit item 7ac9cae8-5067-4faf-b6ab-acfd00e2c328

Bash

echo '["5c926f4f-de9c-449b-8d5f-aec1011c48f6"]' | bw encode | bw edit item-collections 28399a57-73a

0-45a3-80f8-aec1011c48f6 --organizationid 4016326f-98b6-42ff-b9fc-ac63014988f5

Bash

bw get org-collection ee9f9dc2-ec29-4b7f-9afb-aac8010631a1 --organizationid 4016326f-98b6-42ff-b9fc

-ac63014988f5 | jq '.name="My Collection"' | bw encode | bw edit org-collection ee9f9dc2-ec29-4b7f-

9afb-aac8010631a1 --organizationid 4016326f-98b6-42ff-b9fc-ac63014988f5

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 15 of 33

https://stedolan.github.io/jq/

The edit command will perform a replace operation on the object. Once completed, the updated object will be returned as JSON.

The list command retrieves an array of objects (items , folders , collections , and more) from your vault:

Options for the list command are filters used to dictate what will be returned, including --url <url> , --folderid
<folderid> , --collectionid <collectionid> , --organizationid <organizationid> and --trash . Any filter will

accept null or notnull . Combining multiple filters in one command will perform an OR operation, for example:

This command will return items that aren't in a folder or collection.

Additionally, you can search for specific objects using --search <search-term> . Combining filter and search in one command will

perform an AND operation, for example:

This command will search for items with the string github in the specified folder.

The delete command deletes an object from your vault. delete takes only an exact id for its argument.

By default, delete will send an item to the Trash, where it will remain for 30 days. You can permanently delete an item using the -p, --
permanent option.

list

Bash

bw list (items|folders|collections|organizations|org-collections|org-members) [options]

Bash

bw list items --folderid null --collectionid null

Bash

bw list items --search github --folderid 9742101e-68b8-4a07-b5b1-9578b5f88e6f

delete

Bash

bw delete (item|attachment|folder|org-collection) <id> [options]

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 16 of 33

https://bitwarden.com/help/managing-items/#items-in-the-trash

To delete an org-collection , you'll also need to specify --organizationid <organizationid> . See Organization IDs.

Warning

While items that are deleted using delete can be recovered using the restore command for up to 30 days (see details),

items that are deleted using delete --permanent are completely removed and irrecoverable.

The restore command restores a deleted object from your trash. restore takes only an exact id for its argument.

For example:

The send command creates a Bitwarden Send object for ephemeral sharing. This section will detail simple send operations, however

send is a highly flexible tool and we recommend referring to the dedicated article on Send from CLI.

To create a simple text Send:

To create a simple file Send:

Bash

bw delete item 7063feab-4b10-472e-b64c-785e2b870b92 --permanent

restore

Bash

bw restore (item) <id> [options]

Bash

bw restore item 7063feab-4b10-472e-b64c-785e2b870b92

send

Bash

bw send -n "My First Send" -d 7 --hidden "The contents of my first text Send."

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 17 of 33

https://bitwarden.com/help/about-send/
https://bitwarden.com/help/send-cli/

The receive command accesses a Bitwarden Send object. To receive a Send object:

Accessing an organization from the CLI requires knowledge of an ID for your organization, as well as IDs for

individual members and collections.

Retrieve this information directly from the CLI using bw list , for example:

 Tip

You can bw list both collections and org-collections . The bw list collections command will list

all collections, agnostic of which organization they belong to. bw list org-collections will list only collections that belong

to the organization specified using --organizationid .

Bash

bw send -n "A Sensitive File" -d 14 -f /Users/my_account/Documents/sensitive_file.pdf

receive

Bash

bw receive --password passwordforaccess https://vault.bitwarden.com/#/send/yawoill8rk6VM6zCATXv2A/9

WN8wD-hzsDJjfnXLeNc2Q

Organizations commands

Organization IDs

Bash

bw list organizations

bw list org-members --organizationid 4016326f-98b6-42ff-b9fc-ac63014988f5

bw list org-collections --organizationid 4016326f-98b6-42ff-b9fc-ac63014988f5

move

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 18 of 33

https://bitwarden.com/help/about-send/
https://bitwarden.com/help/managing-users/
https://bitwarden.com/help/about-collections/

 Note

August 2021: The share command has been changed to move . Find out more.

The move command transfers a vault item to an organization:

The move command requires you to encode a collection ID, and takes an exact id (the object to share) and

an exact organizationid (the organization to share the object to). For example:

Once completed, the updated item will be returned.

The confirm command confirms invited members to your organization who have accepted their invitation:

Warning

Before administering the confirm command, it is strongly advised that administrators validate the legitimacy of a request by

ensuring that the fingerprint phrase self-reported by the user matches the fingerprint phrase associated with the user you expect to

be confirmed:

Once a user is confirmed, they have the ability to decrypt organization data, so ensuring users' self-reported fingerprint phrases

match expected values is an important step prior to confirming.

Bash

bw move <itemid> <organizationid> [encodedJson]

Bash

echo '["bq209461-4129-4b8d-b760-acd401474va2"]' | bw encode | bw move ed42f44c-f81f-48de-a123-ad010

13132ca dfghbc921-04eb-43a7-84b1-ac74013bqb2e

confirm

From the Admin Console, you can view a user's associated fingerprint phrase during the confirm step.

From the CLI, you can view a user's associated fingerprint phrase with the command bw get fingerprint <id> , where

<id> is that member's user identifier. User identifiers can be retrieved with the Public API.

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 19 of 33

https://bitwarden.com/help/releasenotes/
https://bitwarden.com/help/sharing/
https://bitwarden.com/help/managing-users/#confirm-invited-users
https://bitwarden.com/help/managing-users/#confirm
https://bitwarden.com/help/api/

The confirm command takes an exact member id and an exact organizationID , for example:

Allows admins and owners to manage device approval requests where a user has requested admin approval.

 Note

At this time, bulk device approval is only available for the Bitwarden CLI client downloaded from Bitwarden.com.

Warning

In most scenarios, users are able to approve their own login requests, and admin device approval is not necessary. See Add a trusted

device. Automatic or bulk approval of admin device approval requests neglect verification steps that administrators can perform in

order to ensure a request is legitimate, such as checking the user's reported Fingerprint Phrase.

Bitwarden recommends that significant security controls such as IdP credential standards, IdP MFA, and IdP device registration and

trust be reviewed before enabling and using bulk device approval.

The list command will show all pending device approval requests for an organization:

The approve command is used to approve pending device authorization requests for an organization:

Bash

bw confirm org-member <id> --organizationid <orgid>

Bash

bw confirm org-member 7063feab-4b10-472e-b64c-785e2b870b92 --organizationid 310d5ffd-e9a2-4451-af87

-ea054dce0f78

Device approval

Plain Text

bw device-approval list --organizationid <organization_Id>

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 20 of 33

https://bitwarden.com/download/#downloads-command-line-interface
https://bitwarden.com/help/add-a-trusted-device/
https://bitwarden.com/help/add-a-trusted-device/
https://bitwarden.com/help/add-a-trusted-device/

Similarly, approve-all command can be used to approve all current pending requests:

To deny a pending authorization request:

To deny-all pending authorization requests:

The config command specifies settings for the Bitwarden CLI to use:

A primary use of bw config is to connect your CLI to a self-hosted Bitwarden server:

Plain Text

bw device-approval approve --organizationid <organizationId> <requestId>

Plain Text

bw device-approval approve-all --organization <organizationId>

Plain Text

bw device-approval deny --organizationid <organizationId> <requestId>

Plain Text

bw device-approval deny-all --organizationid <organizationId>

Other commands

config

Bash

bw config server <setting> [value]

Bash

bw config server https://your.bw.domain.com

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 21 of 33

https://bitwarden.com/help/change-client-environment/#cli

 Tip

Connect to the Bitwarden EU server by running the following command:

Pass bw config server without a value to read the server you're connected to.

Users with unique setups may elect to specify the URL of each service independently. Note that any subsequent use of the config command

will overwrite all previous specifications, so this must be run as a single command each time you make a change:

 Note

The bw config server --key-connector <url> command is required if your organization uses Key Connector and you’re

using the --apikey option to login after having removed your master password.

Contact an organization owner to get the required URL.

The sync command downloads your encrypted vault from the Bitwarden server. This command is most useful when you have changed

something in your Bitwarden vault on another client application (for example web vault, browser extension, mobile app) since logging in on the

CLI.

Bash

bw config server https://vault.bitwarden.eu

Bash

bw config server --web-vault <url> \

 --api <url> \

 --identity <url> \

 --icons <url> \

 --notifications <url> \

 --events <url> \

 --key-connector <url>

sync

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 22 of 33

https://bitwarden.com/help/server-geographies/
https://bitwarden.com/help/about-key-connector/
https://bitwarden.com/help/using-sso/#login-using-sso

You can pass the --last option to return only the timestamp (ISO 8601) of the last time a sync was performed.

 Tip

It’s important to know that sync only performs a pull from the server. Data is automatically pushed to the server any time you

make a change to your vault (for example, create , edit , delete).

The encode command Base 64 encodes stdin. This command is typically used in combination with a command-line JSON processor like

jq when performing create and edit operations, for example:

The import command imports data from a Bitwarden export or other supported password management application. The command must

be pointed to a file and include the following arguments:

For example:

Bash

bw sync

encode

Bash

bw get template folder | jq '.name="My First Folder"' | bw encode | bw create folder

bw get item 7ac9cae8-5067-4faf-b6ab-acfd00e2c328 | jq '.login.password="newp@ssw0rd"' | bw encode |

bw edit item 7ac9cae8-5067-4faf-b6ab-acfd00e2c328

import

Bash

bw import <format> <path>

Bash

bw import lastpasscsv /Users/myaccount/Documents/mydata.csv

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 23 of 33

https://en.wikipedia.org/wiki/ISO_8601
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://bitwarden.com/help/import-data/

 Tip

Bitwarden supports lots of formats for import, too many to list here! Use bw import --formats to return the list in your CLI,

or see here.

If you are importing an encrypted .json file that you've created with a password, you will be prompted to enter the password before

import completes.

import to an organization vault

Using the import command with the --organizationid option, you can import data to an organization vault:

The export command exports vault data as a .json or .csv , encrypted .json, or as a .zip with attachments:

By default, the export command will generate a .csv (equivalent to specifying --format csv) to the current working directory,

however you can specify:

export from an organization vault

Using the export command with the --organizationid option, you can export an organization vault:

Plain Text

bw import --organizationid cf14adc3-aca5-4573-890a-f6fa231436d9 bitwardencsv ./from/source.csv

export

Bash

bw export [--output <filePath>] [--format <format>] [--password <password>] [--organizationid <orgi

d>]

--format json to export a .json file

--format encrypted_json to export an encrypted .json file

--password <password> to specify a password to use to encrypt encrypted_json exports instead of your account

encryption key

--format zip to export a .zip that includes your attachments

--output <path> to export to a specific location

--raw to return the export to stdout instead of to a file

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 24 of 33

https://bitwarden.com/help/import-faqs/#q-what-file-formats-does-bitwarden-support-for-import
https://bitwarden.com/help/encrypted-export/
https://bitwarden.com/help/attachments/
https://bitwarden.com/help/encrypted-export/
https://bitwarden.com/help/account-encryption-key/
https://bitwarden.com/help/account-encryption-key/
https://bitwarden.com/help/account-encryption-key/
https://bitwarden.com/help/attachments/

The generate command generates a strong password or passphrase:

By default, the generate command will generate a 14-character password with uppercase characters, lowercase characters, and numbers.

This is the equivalent of passing:

You can generate more complex passwords using the options available to the command, including:

generate a passphrase

Using the generate command with the --passphrase option, you can generate a passphrase instead of a password:

Bash

bw export --organizationid 7063feab-4b10-472e-b64c-785e2b870b92 --format json --output /Users/myacc

ount/Downloads/

generate

Bash

bw generate [--lowercase --uppercase --number --special --length <length> --passphrase --separator

<separator> --words <words>]

Bash

bw generate -uln --length 14

--uppercase , -u (include uppercase)

--lowercase , -l (include lowercase)

--number , -n (include numbers)

--special , -s (include special characters)

--length <length> (length of the password, min of 5)

Bash

bw generate --passphrase --words <words> --separator <separator>

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 25 of 33

By default, bw generate --passphrase will generate a three-word passphrase separated by a dash (-). This is the equivalent of

passing:

You can generate a complex passphrase using the options available to the command, including:

The update command checks whether your Bitwarden CLI is running the most recent version. update doesn't automatically update the

CLI for you.

If a new version is detected, you'll need to download the new version of the CLI using the printed URL for the executable, or using the tools

available for the package manager you used to download the CLI (for example, npm install -g @bitwarden/cli).

The status command returns status information about the Bitwarden CLI, including configured server URL, timestamp for the last sync

(ISO 8601), user email and ID, and the vault status.

Status will return information as a JSON object, for example:

Bash

bw generate --passphrase --words 3 --separator -

--words <words> (number of words)

--separator <separator> (separator character)

--capitalize , -c (include to title-case the passphrase)

--includeNumber (Include a single numerical character in your passphrase)

update

Bash

bw update

status

Bash

bw status

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 26 of 33

https://en.wikipedia.org/wiki/ISO_8601

status may be one of the following:

 Tip

When "status": "unauthenticated" , lastSync , userEmail , and userID will always return null .

The serve command starts a local express web server that can be used to take all actions accessible from the CLI in the form of RESTful

API calls from an HTTP interface.

By default, serve will start the web server at port 8087 however you can specify an alternate port with the --port option.

By default, serve will bind your API web server to localhost however you can specify an alternate hostname with the --
hostname option. API requests can only be made from the bound hostname.

By default, serve will block any request with an Origin header. You can circumvent this protection using the --disable-origin-
protection option, however this is not recommended.

Bash

{

 "serverUrl": "https://bitwarden.example.com",

 "lastSync": "2020-06-16T06:33:51.419Z",

 "userEmail": "user@example.com",

 "userId": "00000000-0000-0000-0000-000000000000",

 "status": "unlocked"

}

"unlocked" , indicating you are logged in and your vault is unlocked (a BW_SESSION key environment variable is saved with an

active session key)

"locked" , indicating you are logged in but your vault is locked (no BW_SESSION key environment variable is saved with an active

session key)

"unauthenticated" , indicating you aren't logged in

serve

Bash

bw serve --port <port> --hostname <hostname>

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 27 of 33

Warning

You can specify --hostname all for no hostname binding, however this will allow any machine on the network to make API

requests.

View the API spec for help making calls with serve .

The debug environment variable can be added for additional troubleshooting information.

The following options are available globally:

Debug

Plain Text

export BITWARDENCLI_DEBUG=true

Appendices

Global options

Option Description

--pretty Format output. JSON is tabbed with two spaces.

--raw Return raw output instead of a descriptive message.

--response Return a JSON formatted version of response output.

--quiet Don't return anything to stdout. You might use this option, for example, when piping a credential value to
a file or application.

--nointeraction Do not prompt for interactive user input.

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 28 of 33

https://bitwarden.com/help/vault-management-api/

The Bitwarden CLI includes support for ZSH shell completion. To setup shell completion, use one of the following methods:

If your self-hosted Bitwarden server exposes a self-signed TLS certificate, specify the Node.js environment variable NODE_EXTRA_CA_CERTS:

Option Description

--session <sessio
n> Pass session key instead of reading from an environment variable.

-v, --version Output the Bitwarden CLI version number.

-h, --help Display help text for the command.

ZSH shell completion

1. Vanilla ZSH: Add the following line to your .zshrc file:

Bash

eval "$(bw completion --shell zsh); compdef _bw bw;"

2. Vanilla (vendor-completions): Run the following command:

Bash

bw completion --shell zsh | sudo tee /usr/share/zsh/vendor-completions/_bw

3. zinit: Run the following commands:

Bash

bw completion --shell zsh > ~/.local/share/zsh/completions/_bw

zinit creinstall ~/.local/share/zsh/completions

Using self-signed certificates

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 29 of 33

https://nodejs.org/api/cli.html#cli_node_extra_ca_certs_file
https://github.com/zdharma/zinit

 Bash

 PowerShell

The following tables enumerate values required in documented scenarios:

Two-step login methods

Used to specify which two-step login method to use when logging in:

 Note

FIDO2 and Duo are not supported by the CLI.

Item types

Used with the create command to specify a vault item type:

Bash

export NODE_EXTRA_CA_CERTS="absolute/path/to/your/certificates.pem"

Bash

$env:NODE_EXTRA_CA_CERTS="absolute/path/to/your/certificates.pem"

Enums

Name Value

Authenticator 0

Email 1

YubiKey 3

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 30 of 33

https://bitwarden.com/help/setup-two-step-login/
https://bitwarden.com/help/managing-items/

Login URI match types

Used with the create and edit command to specify URI match detection behavior for a login item:

Name Value

Login 1

Secure Note 2

Card 3

Identity 4

Name Value

Domain 0

Host 1

Starts With 2

Exact 3

Regular Expression 4

Never 5

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 31 of 33

https://bitwarden.com/help/uri-match-detection/

Field types

Used with the create and edit commands to configure custom fields:

Organization user types

Indicates a user's type:

Organization user statuses

Indicates a user's status within the organization:

Name Value

Text 0

Hidden 1

Boolean 2

Name Value

Owner 0

Admin 1

User 2

Manager 3

Custom 4

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 32 of 33

https://bitwarden.com/help/custom-fields/
https://bitwarden.com/help/user-types-access-control/
https://bitwarden.com/help/managing-users/

Name Value

Invited 0

Accepted 1

Confirmed 2

Revoked -1

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 33 of 33

