
Help Center Article

SELF-HOST  KEY CONNECTOR

Deploy Key Connector

View in the help center:

https://bitwarden.com/help/deploy-key-connector/

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 1 of 13

https://bitwarden.com/help/deploy-key-connector/

Deploy Key Connector

 Note

Bitwarden recommends trusted device decryption as an alternative option to Key Connector that facilitates member login without a

master password and does not require deploying or managing a key server.

This article will walk you through the procedure for enabling and configuring Key Connector in an existing self-hosted environment. Before

proceeding, please thoroughly review the about Key Connector article to ensure a full understanding of what Key Connector is, how it works,

and the impacts of implementation.

Bitwarden supports deployment of one Key Connector for use by one organization for a self-hosted instance.

Warning

Management of cryptographic keys is incredibly sensitive and is only recommended for enterprises with a team and infrastructure

that can securely support deploying and managing a key server.

In order to use Key Connector you must:

If your organization meets or can meet these requirements, including a team and infrastructure that can support management of a key server,

contact us and we'll activate Key Connector.

Once you have contacted us regarding Key Connector, we'll reach out to kick off a Key Connector discussion. The steps that follow in this

article must be completed in collaboration with Bitwarden customer success & implementation specialists.

Requirements

Have an Enterprise organization.

Have a self-hosted Bitwarden server.

Have an active SSO implementation.

Activate the Single organization and Require single sign-on policies.

Setup & deploy Key Connector

Obtain new license file

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 2 of 13

https://bitwarden.com/help/about-trusted-devices/
https://bitwarden.com/help/about-key-connector/
https://bitwarden.com/contact/
https://bitwarden.com/help/password-manager-plans/#enterprise-organizations
https://bitwarden.com/help/install-on-premise-linux/
https://bitwarden.com/help/about-sso/
https://bitwarden.com/help/policies/

Once you have contacted us regarding Key Connector, a member of the customer success & implementation team will generate a Key

Connector-enabled license file for your organization. When your Bitwarden collaborator instructs you it is ready, complete the following steps

to obtain the new license:

You won't need your license file immediately, but you will be required to upload it to your self-hosted server in a later step.

To prepare your Bitwarden server for Key Connector:

1. Open the Bitwarden cloud web app and navigate to your organization's Billing → Subscription screen in the Admin Console.

2. Scroll down and select the Download License button.

3. When prompted, enter the installation ID that was used to install your self-hosted server and select Submit. If you don't know your

installation ID off-hand, you can retrieve it from ./bwdata/env/global.override.env .

Initialize Key Connector

1. Save a backup of, at a minimum, .bwdata/mssql . Once Key Connector is in use, it's recommended that you have access to a pre-Key

Connector backup image in case of an issue.

 Note

If you are using an external MSSQL database, take a backup of your database in whatever way fits your implementation.

2. Update your self-hosted Bitwarden installation in order to retrieve the latest changes:

Bash

./bitwarden.sh update

3. Edit the .bwdata/config.yml file and enable Key Connector by toggling enable_key_connector to true .

Bash

nano bwdata/config.yml

4. Rebuild your self-hosted Bitwarden installation:

Bash

./bitwarden.sh rebuild

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 3 of 13

https://bitwarden.com/help/backup-on-premise/
https://bitwarden.com/help/external-db/

To configure Key Connector:

Endpoints

Automated setup will populate endpoint values based on your installation configuration, however it's recommended that you confirm the

following values in key-connector.override.env are accurate for your setup:

5. Update your self-hosted Bitwarden installation again in order to apply the changes:

Bash

./bitwarden.sh update

Configure Key Connector

1. Edit the .bwdata/env/key-connector.override.env file that will have been downloaded with the ./bitwarden.sh
update .

Warning

This file will be pre-populated with default values that will spin up a functional local Key Connector setup, however the default

values are not recommended for production environments.

Bash

nano bwdata/env/key-connector.override.env

2. In key-connector.override.env , you will need to specify values for the following:

Endpoints: What Bitwarden endpoints Key Connector can communicate with.

Database: Where Key Connector will store and retrieve user keys.

RSA key pair: How Key Connector will access an RSA key pair to protect user keys at rest.

Bash

keyConnectorSettings__webVaultUri=https://your.bitwarden.domain.com

keyConnectorSettings__identityServerUri=http://identity:5000

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 4 of 13

Database

Key Connector must access a database which stores encrypted user keys for your organization members. Create a secure database to store

encrypted users keys and replace the default keyConnectorSettings__database__ values in key-connector.override.env
with the values designated in the Required Values column for the chosen database:

Warning

Migration from one database to another is not supported at this time. Regardless of which provider you choose, implement a

frequent automated backup schedule for the database.

Database Required values

Local JSON (default)

Not recommended outside of testing.

keyConnectorSettings__database__provider=json

keyConnectorSettings__database__jsonFilePath={File_Path}

Microsoft SQL Server

keyConnectorSettings__database__provider=sqlserver

keyConnectorSettings__database__sqlServerConnectionString={Connection_String}

Learn how to format MSSQL connection strings

PostgreSQL

keyConnectorSettings__database__provider=postgresql

keyConnectorSettings__database__postgreSqlConnectionString={Connection_String}

Learn how to format PostgreSQL connection strings

MySQL/MariaDB

keyConnectorSettings__database__provider=mysql

keyConnectorSettings__database__mySqlConnectionString={Connection_String}

Learn how to format MySQL connection strings

MongoDB keyConnectorSettings__database__provider=mongo

keyConnectorSettings__database__mongoConnectionString={Connection_String}

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 5 of 13

https://docs.microsoft.com/en-us/sql/connect/ado-net/connection-string-syntax?view=sql-server-ver15
https://www.npgsql.org/doc/connection-string-parameters.html
https://dev.mysql.com/doc/connector-net/en/connector-net-connections-string.html

RSA key pair

Key Connector uses an RSA key pair to protect user keys at rest. Create a key pair and replace the default

keyConnectorSettings__rsaKey__ and keyConnectorSettings__certificate__ values in key-
connector.override.env with the values required for your chosen implementation.

 Tip

The RSA key pair must be at a minimum 2048 bits in length.

Generally, your options include granting Key Connector access to an X509 Certificate that contains the key pair or granting Key Connector

access directly to the Key Pair. Key Connector does not support rotation of certificates or RSA key pairs.

⇒Certificate

To use an X509 certificate that contains an RSA key pair, specify the values required depending on the location where your certificate is stored

(see Filesystem, OS Certificate Store, and so on):

 Tip

The certificate must be made available as a PKCS12 .pfx file, for example:

In all certificate implementations, you'll need the CN value shown in this example.

Database Required values

keyConnectorSettings__database__mongoDatabaseName={DatabaseName}

Learn how to format MongoDB connection strings

Bash

openssl req -x509 -newkey rsa:4096 -sha256 -nodes -keyout bwkc.key -out bwkc.crt -subj "/CN=

Bitwarden Key Connector" -days 36500

openssl pkcs12 -export -out ./bwkc.pfx -inkey bwkc.key -in bwkc.crt -passout pass:{Password}

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 6 of 13

https://docs.mongodb.com/manual/reference/connection-string/

Filesystem (default)

If the certificate is stored on the filesystem of the machine running Key Connector, specify the following values:

 Note

By default, Key Connector will be configured to create a .pfx file located at etc/bitwarden/key-connector/bwkc.pfx
with a generated password. It is not recommended for enterprise implementations to use these defaults.

Azure Blob Storage

If the certificate is uploaded to Azure Blob Storage, specify the following values:

Set azureStorageConnectionString to a Connection string you can generate in your Azure portal from the Shared access signature

(SAS) page of your storage account. The SAS must have:

Bash

keyConnectorSettings__rsaKey__provider=certificate

keyConnectorSettings__certificate__provider=filesystem

keyConnectorSettings__certificate__filesystemPath={Certificate_Path}

keyConnectorSettings__certificate__filesystemPassword={Certificate_Password}

Bash

keyConnectorSettings__rsaKey__provider=certificate

keyConnectorSettings__certificate__provider=azurestorage

keyConnectorSettings__certificate__azureStorageConnectionString={Connection_String}

keyConnectorSettings__certificate__azureStorageContainer={Container_Name}

keyConnectorSettings__certificate__azureStorageFileName={File_Name}

keyConnectorSettings__certificate__azureStorageFilePassword={File_Password}

Allowed services: Blob and File

Allowed resource types: Service, Container, and Object

Allowed permissions: Read, Write, and List

Allowed blob index permissions: Read/Write and Filter

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 7 of 13

Azure Key Vault

If certificate is stored in Azure Key Vault, specify the following values:

 Note

To use Azure Key Vault to store your .pfx certificate, you'll need to create an Active Directory App Registration. This App

Registration must:

Hashicorp Vault

If the certificate is stored in Hashicorp Vault, specify the following values:

 Note

Key Connector integrates with the Hashicorp Vault KV2 Storage Engine. As per the top of this tab, the certificate file should be in

PKCS12 format and stored base64-encoded as the value to a named key in your Vault. If following a Vault tutorial for the KV2

Storage Engine, the key name may be file unless otherwise specified.

Give delegated API permissions to access Azure Key Vault

Have a client secret generated to allow access by Key Connector

Bash

keyConnectorSettings__certificate__provider=azurekv

keyConnectorSettings__certificate__azureKeyvaultUri={Vault_URI}

keyConnectorSettings__certificate__azureKeyvaultCertificateName={Certificate_Name}

keyConnectorSettings__certificate__azureKeyvaultAdTenantId={ActiveDirectory_TenantId}

keyConnectorSettings__certificate__azureKeyvaultAdAppId={AppRegistration_ApplicationId}

keyConnectorSettings__certificate__azureKeyvaultAdSecret={AppRegistration_ClientSecretValue}

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 8 of 13

⇒Cloud key pair

To use a cloud provider or physical device to store to a RSA 2048 key pair, specify the values required depending on your chosen

implementation (see Azure Key Vault, Google Cloud Key Management, and so on):

Azure Key Vault

If you are using Azure Key Vault to store a RSA 2048 key pair, specify the following values:

 Note

To use Azure Key Vault to store your RSA 2048 key, you'll need to create an Active Directory App Registration. This App Registration

must:

Learn how to use Azure Key Vault to create a key pair

Bash

keyConnectorSettings__rsaKey__provider=certificate

keyConnectorSettings__certificate__provider=vault

keyConnectorSettings__certificate__vaultServerUri={Server_URI}

keyConnectorSettings__certificate__vaultToken={Token}

keyConnectorSettings__certificate__vaultSecretMountPoint={Secret_MountPoint}

keyConnectorSettings__certificate__vaultSecretPath={Secret_Path}

keyConnectorSettings__certificate__vaultSecretDataKey={Secret_DataKey}

keyConnectorSettings__certificate__vaultSecretFilePassword={Secret_FilePassword}

Give delegated API permissions to access Azure Key Vault

Have a client secret generated to allow access by Key Connector

Bash

keyConnectorSettings__rsaKey__provider=azurekv

keyConnectorSettings__rsaKey__azureKeyvaultUri={Vault_URI}

keyConnectorSettings__rsaKey__azureKeyvaultKeyName={Key_Name}

keyConnectorSettings__rsaKey__azureKeyvaultAdTenantId={ActiveDirectory_TenantId}

keyConnectorSettings__rsaKey__azureKeyvaultAdAppId={AppRegistration_ApplicationId}

keyConnectorSettings__rsaKey__azureKeyvaultAdSecret={AppRegistration_ClientSecretValue}

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 9 of 13

https://docs.microsoft.com/en-us/azure/key-vault/keys/quick-create-portal

Google Cloud Key Management

If you are using Google Cloud Key Management to store a RSA 2048 key pair, specify the following values:

Learn how to use Google Cloud Key Management Service to create key rings and asymmetric keys

AWS Key Management Service

If you are using AWS Key Management Service (KMS) to store a RSA 2048 key pair, specify the following values:

Learn how to use AWS KMS to create asymmetric keys

⇒PKCS#11 HSM

If you are using a physical HSM device with the PKCS#11 provider to store a private key, you will need to:

Bash

keyConnectorSettings__rsaKey__provider=gcpkms

keyConnectorSettings__rsaKey__googleCloudProjectId={Project_Id}

keyConnectorSettings__rsaKey__googleCloudLocationId={Location_Id}

keyConnectorSettings__rsaKey__googleCloudKeyringId={Keyring_Id}

keyConnectorSettings__rsaKey__googleCloudKeyId={Key_Id}

keyConnectorSettings__rsaKey__googleCloudKeyVersionId={KeyVersionId}

Bash

keyConnectorSettings__rsaKey__provider=awskms

keyConnectorSettings__rsaKey__awsAccessKeyId={AccessKey_Id}

keyConnectorSettings__rsaKey__awsAccessKeySecret={AccessKey_Secret}

keyConnectorSettings__rsaKey__awsRegion={Region_Name}

keyConnectorSettings__rsaKey__awsKeyId={Key_Id}

1. Upload the corresponding public key, configured as a PEM-encoded certificate, to a location which can be accessed by the Key Connector

container (see Certificates tab).

2. Configure Key Connector with the following values, which include both PKCS#11-specific values (e.g.

keyConnectorSettings__rsaKey__pkcs11...) and values specific to the location you've chosen store your public key (e.g.

k eyConnectorSettings_certificate_...):

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 10 of 13

https://cloud.google.com/kms/docs/creating-asymmetric-keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymm-create-key.html

 Note

Key Connector may need to access specific files, such as a local PEM certificate or PPKCS#11 driver files. By default, the directory

./bwdata/key-connector is mounted into the container at /etc/bitwarden/key-connector , meaning that a

certificate file stored in the host OS at /opt/bitwarden/bwdata/key-connector/certificate.pem is available to the

container at /etc/bitwarden/key-connector/certificate.pem . Key Connector configurations must reference files in

their mounted locations, as in the following example:

Required in all circumstances:

Bash

keyConnectorSettings__rsaKey__provider=pkcs11

keyConnectorSettings__rsaKey__pkcs11Provider={Provider}

keyConnectorSettings__rsaKey__pkcs11SlotTokenSerialNumber={Token_SerialNumber}

keyConnectorSettings__rsaKey__pkcs11LoginUserType={Login_UserType}

keyConnectorSettings__rsaKey__pkcs11LoginPin={Login_PIN}

ONE OF THE FOLLOWING TWO:

keyConnectorSettings__rsaKey__pkcs11PrivateKeyLabel={PrivateKeyLabel}

keyConnectorSettings__rsaKey__pkcs11PrivateKeyId={PrivateKeyId}

OPTIONALLY:

keyConnectorSettings__rsaKey__pkcs11LibraryPath={path/to/library/file}

Plain Text

keyConnectorSettings__certificate__filesystemPath=/etc/bitwarden/key-connector/certificate.p

em

keyConnectorSettings__rsaKey__provider= : Must be pkcs11 .

keyConnectorSettings__rsaKey__pkcs11Provider= : Must be yubihsm or opensc .

keyConnectorSettings__rsaKey__pkcs11SlotTokenSerialNumber= : Serial number used to identify the token to be used.

keyConnectorSettings__rsaKey__pkcs11LoginUserType= : Can be user , so , or context_specific .

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 11 of 13

Required in some circumstances:

Optional:

Additional security measures for Key Connector users are recommended to maintain zero-knowledge encryption for databases and data

transfers.

keyConnectorSettings__rsaKey__pkcs11LoginPin= : PIN code used to access the token.

keyConnectorSettings__certificate__provider= : Can be filesystem , azurestorage , azurekv , or vault .

keyConnectorSettings__rsaKey__pkcs11PrivateKeyLabel= : (Required if not using ...__pkcsPrivateKeyId= , see

below) Label, or "alias", of your privatekey.

keyConnectorSettings__rsaKey__pkcs11PrivateKeyId= : (Required if not using ...__pkcs11PrivateKeyLabel=)

Unique identifier of your private key.

keyConnectorSettings__certificate__filesystem...= : Set both ...__certificate__filesystem... values if you

store your public key on a file system (see Certificates tab).

keyConnectorSettings__certificate__azure...= : Set all ...__certificate__azure... values if you store your public

key in Azure Blob Storage (see Certificates tab).

keyConnectorSettings__certificate__azureKeyvault...= : Set all ...__certificate__azureKeyvault... values if

you store your public key in Azure Key Vault (see Certificates tab).

keyConnectorSettings__certificate__vault...= : Set all ...__certificate__vault... values if you store your public

key in Hashicorp Vault (see Certificates tab).

keyConnectorSettings__rsaKey__pkcs11LibraryPath= : Optionally, point Key Connector to a library file, for example

=/etc/bitwarden/libfxpkcs11.so . Doing so will supersede the value

keyConnectorSettings__rsaKey__pkcs11Provider= .

Securing Key Connector

Organizations who use a TLS intercepting proxy will be required to take additional steps in order to maintain zero-knowledge encryption. To

ensure security, add the Bitwarden URL to your proxy's exclusion list, this will ensure that the data transfer with Key Connector remains

encrypted and un-logged throughout the entire data transfer process.

It is not always possible to migrate between encryption mechanisms.

Migration from one database to another is not supported at this time. Be sure to implement a frequent automated backup schedule for the

database.

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 12 of 13

Warning

Management of cryptographic keys is incredibly sensitive and is only recommended for enterprises with a team and infrastructure

that can securely support deploying and managing a key server.

Now that Key Connector is fully configured and you have a Key Connector-enabled license, complete the following steps:

Activate Key Connector

1. Restart your self-hosted Bitwarden installation in order to apply the configuration changes:

Bash

./bitwarden.sh restart

2. Log in to your self-hosted Bitwarden as an organization owner and navigate to the Admin Console's Billing → Subscription screen.

3. Select the Update license button and upload the Key Connector-enabled license retrieved in an earlier step.

4. If you haven't already, navigate to the Settings → Policies screen and enable the Single organization and Require single sign-on

authentication policies. Both are required to use Key Connector.

5. Navigate to the Settings → Single sign-on screen.

 Tip

The next few steps assume that you already have an active login with SSO implementation using SAML 2.0 or OIDC. If you don't,

please implement and test login with SSO before proceeding.

6. In the Member decryption options section, select Key Connector.

7. In the Key Connector URL input, enter the address Key Connector is running at (by default, https://your.domain/key-
connector) and select the Test button to ensure you can reach Key Connector.

8. Scroll to the bottom of the screen and select Save.

Secure and trusted open source password manager for business

© 2025 Bitwarden Inc | Page 13 of 13

https://bitwarden.com/help/policies/#single-organization
https://bitwarden.com/help/policies/#require-single-sign-on-authentication
https://bitwarden.com/help/policies/#require-single-sign-on-authentication
https://bitwarden.com/help/policies/#require-single-sign-on-authentication
https://bitwarden.com/help/about-sso/
https://bitwarden.com/help/configure-sso-saml/
https://bitwarden.com/help/configure-sso-oidc/

