
A Distributed Algorithm to Evaluate Quantified Boolean Formulae

Rainer Feldmann, Burkhard Monien, Stefan Schamberger
Department of Computer Science

University of Paderborn
Fürstenallee 11, 33102 Paderborn, Germany

(obelix|bm|schaum)@uni-paderborn.de

Abstract

In this paper, we present PQSOLVE, a distributed
theorem-prover for Quantified Boolean Formulae. First,
we introduce our sequential algorithm QSOLVE, which
uses new heuristics and improves the use of known
heuristics to prune the search tree. As a result, QSOLVE
is more efficient than the QSAT-solvers previously
known. We have parallelized QSOLVE. The resulting
distributed QSAT-solver PQSOLVE uses parallel search
techniques, which we have developed for distributed
game tree search. PQSOLVE runs efficiently on dis-
tributed systems, i. e. parallel systems without any
shared memory. We briefly present experiments that
show a speedup of about 114 on 128 processors. To
the best of our knowledge we are the first to introduce
an efficient parallel QSAT-solver.

Introduction
QSAT generalizes propositional satisfiability (SAT) which
has been thoroughly analyzed, see e.g. (Gu et al. 1997),
since it is the prototype of an NP-complete problem and
has applications in automated reasoning, computer-aided
design, computer architecture design, planning, and VLSI.
QSAT is the problem to decide the satisfiability of proposi-
tional formulae, in which the variables may either be univer-
sally (∀) or existentially(∃) quantified. Thus, the inputs of
a QSAT-solver look like the following:

f(X) = QNXNQN−1XN−1 . . .Q0X0 : f ′,

with Qi ∈ {∀, ∃}. TheXi are disjoint sets of boolean vari-
ables,X = ∪N

i=0Xi, andf ′ is a propositional formula over
X. f(X) = ∃XNφ is satisfiable iff there is a truth as-
signment for the variables inXN such thatφ is true, and
f(X) = ∀XNφ is satisfiable iffφ is true for all possible
truth assignments of the variables inXN .

According to the increasing interest in problems not in
NP, QSAT has been studied as a prototype of a PSPACE-
complete problem. Furthermore, by restricting the number
of quantifiers to some fixedc, it has been analyzed as a fam-
ily of prototypical problems for the polynomial hierarchy.
(Gent and Walsh 1999) study QSAT and show that a phase
transition similar to that observed for SAT does occur for

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

QSAT, too. They show that some models of random in-
stances are “flawed” and propose a model, in which each
clause contains at least two existentials.

The first QSAT-solver, published in (Kleine-B¨uning,
Karpinski, and Fl¨ogel 1995), is based on resolution. (Cadoli,
Giovanardi, and Schaerf 1998) propose EVALUATE , an algo-
rithm based on the Davis-Putnam procedure for SAT. EVAL -
UATE contains a heuristic to detect trivial truth of a QSAT in-
stance. (Rintanen 1999) presents an algorithm based on the
Davis-Putnam procedure and introduces a heuristic called
Inverting Quantifiers (IQ). He shows that the use of IQ be-
fore the entire evaluation process speeds up the computation
of several QSAT instances which originate from conditional
planning.

First, we describe QSOLVE, a sequential QSAT-solver.
QSOLVE is based on the Davis-Putnam procedure for SAT.
We make use of a generalization of the data structures of
a SAT-solver (B¨ohm and Speckenmeyer 1996). The data
structure supports the operations to delete a clause, to delete
a variable, and to undo these deletions. We implemented
most of the heuristics that were introduced by (Cadoli, Gio-
vanardi, and Schaerf 1998) and (Rintanen 1999). Moreover,
we have developed an approximation algorithm for the IQ-
heuristic of (Rintanen 1999) which allows the use of IQ dur-
ing the evaluation process. We developed a simple history
heuristic to determine on whether or not to apply the heuris-
tic to detect trivial truth (TTH) of (Cadoli, Giovanardi, and
Schaerf 1998) at a node in the search tree. In addition, we
have developed a heuristic to detect trivial falsity (TFH) of
a QSAT instance. TFH is controlled by a history heuristic,
too. We show experimentally, that with the help of these ad-
ditional heuristics our algorithm is faster than the ones men-
tioned above.

Then we present our parallelization of QSOLVE. The par-
allelization is similar to the parallelization used in the chess
program ZUGZWANG (Feldmann, Monien, and Mysliwietz
1994). For chess programs this parallelization is still the best
known (Feldmann 1997).

Since QSAT can be regarded as a two-person zero-sum
game with complete information, it is not surprising that
techniques from parallel chess programs are applicable to
QSAT-solvers. We briefly explain the general concepts of
our parallelization and then concentrate on the heuristics that
are used in order to schedule subproblems. Finally, we show

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

experimentally that the resulting parallel QSAT-solver PQ-
SOLVE works efficiently. On a set of randomly generated
formulae the speedup of the 128-processor version is about
114. To the best of our knowledge, PQSOLVE is the first
parallel QSAT-solver. Moreover, it is very efficient. Its ef-
ficiency of about 90 % is partly due to the fact that the dy-
namic load balancing together with our scheduling heuris-
tics often result in a “superlinear” speedup. The effect has
already been observed for SAT (Speckenmeyer, Monien, and
Vornberger 1987) and indicates that the sequential depth-
search algorithm is not optimal. However, as the sequential
program is best among the known algorithms for QSAT, we
define speedup on the basis of our sequential implementa-
tion.

QSOLVE: The Sequential Algorithm

The skeleton of QSOLVE is presented below:

booleanQsolve(f) /* f is “call by value” parameter */
/* let f = QNXNQN−1XN−1 . . .Q0X0 : f ′, */
/* let s ∈ {true, false, unknown}, x a literal */

s← simplify(f); /* f may be altered */
if (s 6= unknown)return s; /* prune */

if (QN = ∃)
if (N ≥ 2) /* f has≥ 3 blocksQN . . .Q0 */

if (x← InvertQuantifiers(f)) /* IQ */
s← reduce(f ,x = true); /* f is altered */
if (s 6= unknown)return s; /* prune */
return Qsolve(f); /* recursion */

x← SelectLiteral(f);

s← reduce(f ,x = true); /* f is altered */
if (s 6= unknown)return s; /* prune */
if (Qsolve(f) = true) /* branch */

return true; /* cutoff */

undo(f ,x = true); /* f is altered */
s← reduce(f ,x = false); /*f is altered */
if (s 6= unknown)return s; /* prune */
return Qsolve(f); /* branch */

else/* QN = ∀ */
if (TrivialTruth(f) = true) /* TTH: SAT */

return true; /* prune */
if (TrivialFalsity(f) = false) /* TFH: SAT */

return false; /* prune */

x← SelectLiteral(f); /* complement */

· · ·
if (Qsolve(f) = false) /* branch */

return false; /* cutoff */
· · ·

end

When called for a formulaf, f is simplified first. This is
done by setting the truth values of monotone and unit exis-
tential variables. The formula is checked for an empty set of
clauses or the empty clause, etc.

We measure the length of a clause in terms of∃-quantified
literals of the clause. Thus, a variablex ∈ XN is unit ex-
istential iff QN = ∃ and there is a clause that containsx
as the only∃-quantified variable. The simplification is then
performed according to (Cadoli, Giovanardi, and Schaerf
1998). The function “simplify” may deliver the result that
the formula is satisfiable or unsatisfiable.

Then, in the first case (QN = ∃) the IQ-heuristic may
determine a literal that must be set to true in order to satisfy
f.

If the IQ-heuristic does not deliver the desired literal a
branching literal is determined in such a way thatx is set to
true in the first branch. Unless a cutoff occurs, both branches
are tested recursively.

In the second case (QN = ∀), a test for trivial truth and
trivial falsity is performed first. The literal that is selected
for the branching is negated. The cutoff condition is changed
according to the∀-quantor. The rest of the caseQN = ∀ is
similar to the first case.

In the next sections, we will describe the features of
QSOLVE mentioned above in more detail.

Literal Selection
The function SelectLiteral selects a literalx ∈ XN . Se-
lectLiteral first determines the variablev to branch with.
Then the literalx ∈ {v, v̄} is selected in such a way
that it is set to true in the first branch and to false in the
second one. If the literal is∃-quantified, the selection is
done like in the SAT-solver by (B¨ohm and Speckenmeyer
1996): For every literalx let ni(x) (pi(x)) be the num-
ber of negative (positive) occurrences of literalx in clauses
of length i, and let hi(x) = max(ni(x), pi(x)) + 2 ·
min(ni(x), pi(x)). A literal x with lexicographically largest
vector(h0(x), . . . hk(x)) is chosen for the next branching
step. The idea is to choose literals that occur as often as
possible in short clauses of the formula and to prove satisfi-
ability in the first branch already. The setting of these literals
often reduces the length of the shortest clause by one. Of-
ten, the result is a unit clause or even an empty clause. If
QN = ∀, the literal is negated, i. e. the branching variable
is the same but the branches are searched in a different order.
This often helps to prove unsatisfiability in the first branch
already.

Inverting Quantifiers
The technique to invert quantifiers is based on (Rintanen
1999). We have developed the approximation algorithm pre-
sented below. The function InvertQuantifiers (IQ) tries to
compute an∃-quantified literal ofXN which must be set to
true in order to satisfyf. IQ starts checking on whether there
is a unit existentialx ∈ XN . If this is not the case, it tries to
create unit existentials by setting monotone∀-literals in unit
clauses. Note that a unit clause is a clause with one existen-
tial. If none of the∀-literals is monotone, it keeps track of
the∀-literal h with a maximum occurrence in unit clauses.

IQ continues recursively by testingh = true andh = false.
In our implementation, we stop searching for a literal, if the
number of recursive calls of InvertQuantifiers exceeds four.
This constant has been the result of a simple program opti-
mization on a small benchmark.

literal InvertQuantifiers(f) /* f is “call by value” */
/* let f = QNXNQN−1XN−1 . . .Q0X0 : f ′, */
/* let s ∈ {true,false,unknown}, x, h literals */

do /* create unit existentials */
forall (∃-unitsx ∈ f)

if (x ∈ XN) return x;
s← reduce(f ,x = true); /* f is altered */
if (s = false)return NULL;

forall (∀-literalsx)
if (#|C|=1(x) > 0 and #|C|=1(x̄) = 0)

/* x is monotone */
s← reduce(f ,x = false); /*f is altered */
if (s = false)return NULL;

if (#|C|=1(x) = 0 and #|C|=1(x̄) > 0)
/* x̄ is monotone */
s← reduce(f ,x = true); /* f is altered */
if (s = false)return NULL;

if (#|C|=1(x) > 0 and #|C|=1(x̄) > 0)
/* neitherx nor x̄ are monotone */
h← max#|C|=1(h, x, x̄);

while (there are∃-units∈ f);

if (h = NULL) return NULL; /* no recursive search */

reduce(f ,h = true); /* recursive search */
x← InvertQuantifiers(f);
if (x 6= NULL) return x;

undo(f ,h = true); /* recursive search */
reduce(f ,h = false);
return InvertQuantifiers(f);

end

Lemma: Let f be a Quantified Boolean Formula, and let
x = InvertQuantifiers(f) be a literal off. f is satisfiable iff
f[x=true] is satisfiable.

The proof is an easy induction on the recursion depth of
InvertQuantifiers. Note thatf does not contain unit existen-
tials before the initial call to InvertQuantifiers.

Trivial Truth

(Cadoli, Giovanardi, and Schaerf 1998) present a test for
trivial truth: Given a QSAT instancef, delete all ∀-
quantified literals from the clauses. This results in a set
of clauses of∃-quantified literals. Solve the corresponding
SAT instancef ′. If f ′ is satisfiable thenf is satisfiable. SAT
is NP-complete, but algorithmically QSOLVE can be used to
solve the SAT-problem. The QSAT-solver does benefit from
this heuristic, only iff ′ is satisfiable.

Adaptive Trivial Truth
Since a considerable amount of time may be wasted for the
solving of SAT instances (one at every∀-node of the search
tree) we have developed a simple adaptive history heuristic
to determine on when to apply this test: At every node of
the search tree two global variabless andv are changed:
Initially, v=1 ands=2. TrivialTruth is executed ifv ≥ s. If
TrivialTruth is executedv is set to 1 ands is set as follows:
if the execution proves satisfiabilitys is set to2, otherwise
s = max(2 · s, 16). If TrivialTruth is not executed thenv =
2 ·v. The idea is that in the parts of the search tree where the
function TrivialTruth is successfully applied, the heuristic is
used at every second node of the search tree (s = 2). In
the parts of the tree, where TrivialTruth is unsuccessful,s
increases to 16 and thus, the use of TrivialTruth is restricted
to every fifth node of the search tree. Again, the constants of
2 and 16 have been the result of a program optimization on
some benchmark instances.

0

0.1

0.2

0.3

0.4

0.5

0.6

100 120 140 160 180 200 220 240

100

50

0

tim
e

(s
ec

)

S
at

is
fia

bi
lit

y

Number of clauses

% SAT
Qsolve

Evaluate
QKN
QBF

The diagram above presents the average running times
of QSOLVE, EVALUATE (Cadoli, Giovanardi, and Schaerf
1998), QKN (Kleine-Büning, Karpinski, and Fl¨ogel 1995),
and QBF (Rintanen 1999) on formulae with 50 variables (15
∀-quantified ones), clauses of length four and three blocks.
The formulae have been generated randomly according to
Model A by (Gent and Walsh 1999). The average is taken
over 500 formulae. QSOLVE and QKN are C programs,
EVALUATE is a C++ program, to run QBF we used a binary
from Rintanens home page. Note that the running times are
arithmetic means of unnormalized data (left y-axis). E.g.
from the 500 QSAT instances with 180 clauses we obtain
the following running times rounded to 4 decimal digits:

time(sec) QSOLVE EVALUATE QKN QBF
minimum 0.0004 0.0000 0.0050 0.0700

average 0.0100 0.4188 0.2927 0.5394
maximum 0.1225 6.7700 4.3910 1.2200

variance 0.0119 0.6726 0.3969 0.1699
QSOLVE uses considerably less time than any of the other

QSAT-solvers. This has been observed for other classes of
randomly generated formulae, too. However, it should be
pointed out that QBF needs less recursions than QSOLVE.

Adaptive Trivial Falsity
Let f(X) = QNXNQN−1XN−1 . . .Q0X0 :

∧m
i=1 Ci be a

QSAT instance, letLk = {x, x̄ | x ∈ Xk}, LΣ =
⋃

Qi=∃ Li,

LΠ =
⋃

Qi=∀ Li. Forx ∈ Lk let block(x) := k.

Definition: For a formulaf and a setI ⊂ {1, . . . , m} we
definefI := ∃Σ :

∧
i∈I Ci ∩ Σ.

f{1,...,m} is the SAT instancef ′ of the test for trivial truth.
Definition: Two clausesCi, Cj are conflict free, if for all

x ∈ LΠ

x ∈ Ci ⇒
{

x̄ 6∈ Cj or
block(y) > block(x)∀y ∈ (Ci ∪ Cj) ∩ LΣ

I is conflict free if for alli, j ∈ I Ci andCj are conflict free.
Lemma: Let f be a QSAT instance, letI ⊂ {1, . . . , m}

be conflict free. IffI is not satisfiable, thenf is not satisfi-
able.

The lemma above can be proven by induction on the
number of variables off . Simplify f without deleting or
reordering the clauses. Then, ifI is conflict free forf,
I is conflict free forf[x=0] and f[x=1] for the outermost
variablex of f. Furthermore,(f[x=0])I = (fI)[x=0] and
(f[x=1])I = (fI)[x=1].

The generating of a conflict free clause setI with a maxi-
mum number of clauses can be shown to be computationally
equivalent to the Maximum Independent Set problem, which
is NP-complete in general. The function TrivialFalsity first
determines a conflict free set of clausesI by a greedy ap-
proximation and then evaluatesfI by using QSOLVE. The
use of TrivialFalsity is controlled by a history heuristic sim-
ilar to the one described for TrivialTruth. Moreover, the test
which has been used successfully most recently in the search
process is performed first.

We tested a version of QSOLVE using TrivialFalsity on
a set of 9500 randomly generated formulae of the form
∃∀∃ − 150 − L4, i. e. formulae with 150 variables (50∀-
quantified) and clause length four. The number of clauses
varied from 300 to 650 in steps of 2. For each number
of clauses we evaluated 50-100 formulae. The table below
presents us with the average, minimum, and maximum sav-
ings in terms of recursions and running time. The net de-
crease of the running time is 11.57 %. The minimal savings
occur at formulae with 648 or 302 clauses resp., whereas the
maximum savings occur at formulae with 324 clauses.

Savings Rec % (#cls) Time % (#cls)
Average 35.26 % 11.57 %
Minimum 16.36 % 648 -7.00 % 302
Maximum 59.98 % 324 31.44 % 324

PQSOLVE: The Distributed Algorithm
We first describe a general framework to search trees in par-
allel.

The Basic Algorithm
The basic idea of our distributed QSAT-solver is to decom-
pose the search tree and search parts of it in parallel. This is
organized as follows: Initially, processor 0 starts its work on
the input formula. All other processors are idle. Idle proces-
sors send requests for work to a randomly selected proces-
sor. If a busy processorP gets a request for work, it checks
on whether or not there are unexplored parts of its search
tree waiting for evaluation. The unexplored parts are rooted
in the right siblings of the nodes ofP ’s current search stack.

On certain conditions, which will be described later,P sends
one of these siblings (a formula) to the requesting processor
Q. P is now the master ofQ, andQ the slave ofP. Upon
receiving a nodev of the search tree,Q starts a search below
v. After having finished its work,Q sends the result back
to P. The master-slave relationship is released andQ is idle
again. The result is used byP as if P had computed it by
itself, i. e. the stack is updated and the search below the fa-
ther ofv is stopped, if a cutoff occurs (see the conditions for
a cut in QSOLVE). The message which contains the result is
interpreted byP as a new request for work. If, upon receiv-
ing a request for work, a processor is not allowed to send
a subproblem, it passes the request to a randomly selected
processor. WheneverP notices that a subproblem sent to
another processorQ may be cut off, it sends a cutoff mes-
sage toQ, andQ becomes idle.

In distributed systems messages may be delayed by other
messages. It may happen, that messages refer to nodes that
are no longer active on the search stack. Therefore, for every
nodev a processor generates a locally unique ID. This ID is
added to every message concerned withv. All messages re-
ceived are checked for validity. Messages that are no longer
valid are discarded.

The load balancing is completely dynamic: a slaveQ of a
masterP may itself become master of a processorR. How-
ever, if a processorP has evaluated the result for a nodev,
but a sibling ofv is still under evaluation at a processorQ,
P has to wait untilQ finishes its search, since the result of
the father ofv depends on the result ofQ.

The nodes searched for the solution of the SAT (TTH,
TFH) instances are not distinguished from the nodes
searched for the solution of the original QSAT instance.
Therefore, the tests are done in parallel too.

The above is a general framework for parallel tree search.
In the next section we will describe in detail our scheduling
methods in order to cope with the problems that arise when
searching QSAT trees:

• In general, a busy processor has a search stack with more
than one right sibling available for a parallel evaluation.
Upon receiving a request for work, it has to decide on
which subproblem (if any) to send to the requesting pro-
cessor.

• A processor that waits for the result of a slave is doing
nothing useful. We describe a method for getting it busy
while it is waiting.

• At nodes that correspond to∃-quantified (∀-quantified)
variables a cutoff occurs, if the left branch evaluates to
true (false). In this case the right branch is not evaluated
by the sequential algorithm. However, in the parallel ver-
sion, both branches may be evaluated at the same time. In
this case the parallel version may do considerably more
work than the sequential one. We describe a method for
delaying parallelism, in order to reduce the amount of use-
less work.

The scheduling heuristics presented in the next sections
are not needed to prove the correctness of the parallel algo-
rithm, but rather to improve its efficiency.

Scheduling
The selection of subproblemsthat are to be sent upon re-
ceiving a request is supposed to fulfill the following require-
ments:
• The subproblem is supposed to be large enough to keep

the slave busy for a while. Otherwise, the communication
overhead increases since at least two messages (the sub-
problem itself and the request for work / result) have to be
sent for every subproblem. In general, the size of a search
tree below a nodev is unpredictable. However, the sub-
trees rooted at nodes higher in the tree are typically larger
than the ones rooted at the nodes deeper in the tree.

• The heuristic to select a literal for the branching process
of QSOLVE selects a variable to branch with and then de-
cides on which branch is searched first. The intention is
to prove (un)satisfiability first at nodes that correspond to
∃- (∀-) quantified variables. A perfect heuristic selects
subproblems such that both siblings must be evaluated to
get the final result. Our heuristic to select subproblems
prefers the variablesx such that both literalsx, x̄ appear
equally often in the formula.
Formally, letv0, . . . , vm be the nodes of the search stack

of a processorP. Let x0, . . . , xm be the boolean variables
that correspond tov0, . . . , vm. Upon receiving a request,
P sends the highest right son ofvi such that3 · |N(xi) −
P (xi)| + i is minimized, whereP (xi) =

∑
j pj(xi) and

N(xi) =
∑

j nj(xi) (see section “Literal Selection”).
In order to avoid masters having to wait for slaves we have

proposed theHelpful Master Scheduling (HMS) for a dis-
tributed chess program (Feldmann et al. 1990): Whenever a
processorP waits for its slaveQ to send a result,P sends
a special request for work toQ. Q handles this request like
a regular request. IfQ does not send a subproblem,P will
keep waiting for the result ofQ. If Q sends a subproblem
to P, it will be guaranteed that the root of the subproblem is
deeper in the tree than the node whereP is waiting.P then
behaves like a regular slave ofQ. Later, if Q waits for its
slaveP, the protocol is repeated withQ as the master and
P as the slave. The termination of this protocol is guaran-
teed since the depth of the overall search tree is limited by
the number of variables. While supporting its slave a pro-
cessorP handles messages concerned with upper parts of
the search tree asP would do while waiting forQ. A cutoff
message requires the deletion of several HMS-shells from
the work stack.

Since the search trees of QSOLVE are binary, the avoid-
ance of waiting times is crucial for the efficiency of our par-
allel implementation.

Another problem arises when two processorsP and Q
search two siblingsv0, v1 of a nodev in parallel, but the
result of v0 cuts off the search belowv. In this case the
work done for the search belowv1 is wasted. Since the load
balancing is fully dynamic a considerable amount of work
which is avoided by the sequential program is done by the
parallel one. For a distributed chess program we use the
Young Brothers Wait Scheduling (YBWS) (Feldmann et
al. 1990) to avoid irrelevant work. YBWS states that the par-
allel evaluation of a right (“younger”) sibling may start only

after the evaluation of the leftmost sibling has been finished.
With the help of the YBWS the parallelism at a nodev is
delayed until at least one successor ofv is completely eval-
uated. By the use of the YBWS the parallel search performs
all cutoffs produced by the result of the evaluation of the left-
most son. However, in binary trees such as the ones searched
for QSAT, this would lead to a sequential run. Therefore, in
PQSOLVE we apply YBWS to blocks of variables. The sub-
trees that correspond to a blockX have2|X|+1 − 1 nodes.
For each of these subtrees, the parallel evaluation of these
nodes is delayed until the leftmost leaf is evaluated.

Results
QSAT instances: The results are taken from a set of 48
QSAT instances. These instances have been generated ran-
domly according to the model A by (Gent and Walsh 1999).
The number of variables is about 120, the clause length is
four, the number of blocks range from two to five. The frac-
tion of ∀-variables is 25 %, the number of clauses varies
from 416 to 736. The instances are hard in the sense that all
sequential QSAT-solvers mentioned in this paper need con-
siderable running times to solve them.

Hardware: Experiments with PQSOLVE are performed
on the PSC2-cluster at the Paderborn Center for Parallel
Computing. Every processor is a Pentium II/450 MHz run-
ning the Solaris operating system. The processors are con-
nected as a 2D-Torus by a Scali/Dolphin CluStar network.

The effects of HM-scheduling have been studied by run-
ning PQSOLVE on the PSC-cluster, a machine with Pentium
II/300 MHz processors and Fast-Ethernet communication.
The communication is implemented on the basis of MPI.

Efficiency:

P time(s) SPE work %
1 1594.60 1.00 0.00
32 43.29 36.84 -32.13
64 24.44 65.25 -30.30
128 13.99 114.02 -29.55

The table above presents us with the data from the parallel
evaluations (averaged over 48 QSAT instances). As can be
seen, the overall speedup is about 114 on 128 processors.
The high efficiency is due to the fact that PQSOLVE needs
about 30 % less recursions than QSOLVE (fourth column),
i.e. the parallel version does less work than the sequential
one. The result is a “superlinear” speedup(SPE(P) > P)
on several instances. This effect has already been observed
for SAT (Speckenmeyer, Monien, and Vornberger 1987) but
is surprising for QSAT.

The main reason for this effect is the fact that the trees
searched by QSOLVE are highly irregular due to the tests for
trivial truth and trivial falsity. The load balancing supports
the parallelism in the upper parts of the tree. A considerable
amount of work can be saved by searching two sons of a
node in parallel: The one that would have been searched
second by QSOLVE delivers a result that cuts off the first
branch, or, both branches would deliver a result cutting off
the other one, but the branch considered first by QSOLVE is
harder to evaluate than the second one.

Load balancing: The table below presents us with the per-
centage of the running time the processors spend in the states
BUSY (evaluating a subtree),WAIT (waiting for the re-
sult of a slave),COM (sending or responding to messages),
andIDLE (not having any subproblem at all).

P forks BUSY WAIT COM IDLE
1 0.0 100.00 0.00 0.00 0.00
32 2107.5 83.86 8.87 3.75 0.80
64 4017.6 77.29 9.23 8.71 3.65
128 7413.2 69.00 10.16 16.58 2.08

The second column reveals the average number of sub-
problems that are sent during an evaluation process. The
work load of the sequential version is 100 % by definition.
The scheduling works well, resulting in an average work
load of 69 % for 128 processors.

HM-scheduling: A crucial point for the evaluation of bi-
nary QSAT-trees is the HM-scheduling. Although HM-
scheduling increases the number of subproblems that are
sent by a factor of about four, it reduces the waiting times
from 31.38% to less than 9 % for 32 processors. The tables
below present us with results obtained from running our 48
QSAT instances on the PSC-cluster. Note that the commu-
nication of the PSC-cluster is significantly slower than the
one of the PSC2-cluster used for the experiments above.

time(s) SPE work
¬HM 92.64 22.61 -27.72

HM 70.72 29.61 -29.20

forks BUSY WAIT COM IDLE
¬HM 566.1 52.03 31.38 13.23 1.52

HM 2185.6 69.42 8.75 18.73 0.71

YBW-scheduling: The YBW-scheduling has two effects:
Firstly, as intended, the number of recursions is frequently
decreased on instances with sublinear speedup. Secondly,
the number of recursions is increased on many instances
with superlinear speedup. In total YBW-scheduling has
nearly no effect.

Conclusions and Future Work
We presented QSOLVE, a QSAT-solver that uses most of the
techniques published for other QSAT-solvers before. In ad-
dition, we have implemented an adaptive heuristic to decide
on when to use the expensive tests for trivial truth and triv-
ial falsity. Moreover, QSOLVE benefits from a new test for
trivial falsity.

We parallelized QSOLVE. The result is the parallel QSAT-
solver PQSOLVE which runs efficiently on even more than
100 processors.

These encouraging results were obtained from random
formulae. We are going to run PQSOLVE on structured in-
stances in the near future. We are currently analyzing the
test for trivial falsity. It may be improved by the way the
conflict free setI is determined or by the use of more than
one set. Moreover, this test for trivial falsity may lead to
new insights into the theory of randomly generated QSAT
instances.

Acknowledgment
We would like to thank Marco Cadoli for providing us with
a binary of EVALUATE , Theo Lettmann for many helpful
discussions, and the referees of AAAI for their construc-
tive comments. This work has been supported by the DFG
research project “Selektive Suchverfahren” under grant Mo
285/12-3.

References

Böhm, M.; and Speckenmeyer, E. 1996. A fast parallel
SAT-solver – efficient workload balancing.Annals of
Mathematics and Artificial Intelligence17:381–400.

Cadoli, M.; Giovanardi, A.; and Schaerf, M. 1998.
An Algorithm to Evaluate Quantified Boolean Formulae.
Proc. of the 15th National Conference on Artificial Intelli-
gence (AAAI-98)262–267. AAAI Press.

Feldmann, R.; Monien, B.; Mysliwietz, P.; and Vorn-
berger O. 1990. Distributed Game Tree Search. InParallel
Algorithms for Machine Intelligence and Pattern Recog-
nition, Kumar, V., Kanal, L.N., and Gopalakrishnan, P.S.
eds., 66–101, Springer-Verlag.

Feldmann, R.; Monien, B.; and Mysliwietz, P. 1994.
Studying Overheads in Massively Parallel MIN/MAX-
Tree Evaluation.Proc. of the 6th ACM Symp. on Parallel
Algorithms and Architectures (SPAA-94)94–103. ACM.

Feldmann, R. 1997. Computer Chess: Algorithms
and Heuristics for a Deep Look into the Future.Proc. of
the 24th Seminar on Current Trends in Theory and Prac-
tice of Informatics (SOFSEM-97)LNCS 1338, 511–522,
Springer Verlag.

Gent, I.P.; and Walsh, T. 1999. Beyond NP: The QSAT
Phase Transition.Proc. of the 16th National Conference
on Artificial Intelligence (AAAI-99)648–653. AAAI Press.

Gu, J.; Purdom, P.W.; Franco, J.; and Wah, B.W.
1997. Algorithms for the Satisfiability (SAT) Problem: A
Survey. In Satisfiability Problem: Theory and Applica-
tions,Du, D., Gu, J., and Pardalos, P.M. eds. DIMACS 35,
19–151. American Mathematical Society.

Kleine-Büning, H.; Karpinski, M.; and Fl¨ogel, A.
1995. Resolution for quantified boolean formulas.Infor-
mation and Computation,117:12–18.

Rintanen, J. 1999. Improvements to the Evaluation of
Quantified Boolean Formulae.Proc. of the 16th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-99),1192–1197. Morgan Kaufman.

Speckenmeyer, E; Monien, B; and Vornberger, O.
1987. Superlinear speedup for parallel backtracking.
Proc. of the International Conference on Supercomputing
(ICS-87)LNCS 385, 985–993, Springer-Verlag.

