CERN Accelerating science

002928186 001__ 2928186
002928186 003__ SzGeCERN
002928186 005__ 20250417230609.0
002928186 0247_ $$2DOI$$9CERN$$a10.23730/CYRSP-2024-003.385
002928186 0248_ $$aoai:cds.cern.ch:2928186$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pINIS$$pcerncds:CERN
002928186 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2902020$$d2025-03-27T10:33:23Z$$h2025-03-28T05:00:12Z$$mmarcxml
002928186 035__ $$9Inspire$$a2902020
002928186 041__ $$aeng
002928186 100__ $$aBartosik, Hannes$$uCERN
002928186 245__ $$9CERN$$aI.9 — Transverse nonlinear effects
002928186 260__ $$c2024
002928186 300__ $$a47 p
002928186 520__ $$9CERN$$aThis chapter provides a basic introduction to nonlinear effects in particle accelerators. It covers important concepts like resonance driving terms, resonances, tune diagram and chaotic motion, which are crucial for understanding how particle dynamics evolves in the presence of nonlinear magnetic fields. Additionally, it provides an overview of methods like resonance compensation and beam extraction. Techniques such as symplectic integration, dynamic aperture and frequency map analysis are also introduced, which are used to study and analyze these effects.
002928186 540__ $$aCC-BY-4.0$$bCERN$$uhttps://creativecommons.org/licenses/by/4.0/
002928186 542__ $$dCERN$$g2024
002928186 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002928186 690C_ $$aARTICLE
002928186 690C_ $$aCERN
002928186 690C_ $$aYELLOWREPCONTRIB
002928186 700__ $$aKostoglou, Sofia$$uCERN
002928186 773__ $$02902634$$c385$$pCERN Yellow Rep. School Proc.$$v3$$wC24-11-27$$y2024
002928186 8564_ $$82722154$$s10310189$$uhttps://cds.cern.ch/record/2928186/files/document.pdf$$yFulltext
002928186 960__ $$a13
002928186 962__ $$b2927974$$k385$$ngeneva20241117
002928186 980__ $$aARTICLE
002928186 980__ $$aConferencePaper
002928186 980__ $$aBookChapter