A First Comparison of Abstract Argumentation
Systems: A Computational Perspective

Stefano Bistarelli!2, Fabio Rossi', and Francesco Santini?

! Department of Mathematics and Computer Science, University of Perugia, Italy
[bista,rossi]@dmi.unipg.it
2 Institute of Informatics and Telematics (CNR), Pisa, Ttaly
stefano.bistarelli@iit.cnr.it
3 EPI Contraintes, INRIA Rocquencourt
francesco.santini@inria.fr

Abstract. In this paper we introduce an initial comparison among three
different implementations of Abstract Argumentation Systems: ASPAR-
TIX, ConArg, and Dung-O-Matic. These tools are tested over four differ-
ent kinds of interaction graphs, corresponding to Erdés-Rényi networks,
scale-free Barabasi networks, Watts-Strogatz, and Kleinberg small-world
networks. Our final goal is to thoroughly evaluate their performance (in
this work we test complete and stable semantics only), and to find the
most efficient one, but also, more in general, to better study this kind of
problems from the computational point of view.

1 Introduction

An Abstract Argumentation Framework (AF), or System, as introduced in the
seminal paper by Dung [5], is simply a pair (A, R) consisting of a set A whose
elements are called arguments, and of a binary relation R on A, called “attack”
relation. Several different semantics (i.e., extensions) can be obtained over argu-
ments by considering subsets of arguments with specific properties. An AF has
an obvious representation as a directed graph where nodes are arguments and
edges are drawn from attacking to attacked arguments.

The main aim of this work is to better understand this kind of systems under
the perspective of their computational performance, in terms of networks with
different properties and size. Indeed, existent and future applications [9] exploit-
ing AFs need to efficiently behave and scale over “large” networks with properties
close to real-world ones. In fact, in complex discussions it is not hard to find 50-
100 arguments at least, especially if we consider on-line open fora, or discussion
groups. When we make these digital tribunes correspond to well-known social
networks, as Twitter or Facebook, but also to more structured debate-friendly
tools, as DebateGraph?, then the number of arguments can further increase due
to the a high number of users participating to a discussion. The different intrin-
sic nature of these graphs leads to find more or less extensions of some kind,

4 http://debategraph.org



242 Stefano Bistarelli, Fabio Rossi and Francesco Santini

e.g., stable ones [5]. In our tests we adopt two different types of small-world net-
works (Kleinberg [11] and Watts-Strogatz [13]), one class of scale-free networks
(Barabasi [1]), and Erdds-Rényi [8] networks (see Sec. 3.2).

Our main goal is to compare three different tools that are more oriented to
a straight computation of extensions, than on providing support to negotiation
or decision-making. These tools correspond to ASPARTIX, ConArg, and Dung-
O-Matic, introduced in Sec. 3.

2 Dung Argumentation

In [5], Dung has proposed an abstract framework for argumentation in which
the focus is on the definition of the argument status.

Definition 1. An Argumentation Framework (AF) is a pair (A, R) of a set A of
arguments and a binary relation R on A called the attack relation. Ya;,a; € A,
a;Ra; means that a; attacks a;. An AF may be represented by a directed graph
(the interaction graph) whose nodes are arguments and edges represent the attack
relation. A set of arguments B attacks an argument a if a is attacked by an
argument of B. A set of arguments B attacks a set of arguments C if there is an
argument b € B which attacks an argument c € C.

Dung gave several semantics to “acceptability”. These various semantics pro-
duce none, one or several acceptable sets of arguments, called “extensions”. In
Def. 2 we define the concepts of conflict-free and stable extensions:

Definition 2. A set B C A is conflict-free in a given (A, R) iff no two argu-
ments a and b in B exist such that a attacks b. A conflict-free set B C A is a
stable extension iff for each argument which is not in B, there exists an argument
in B that attacks it.

The other semantics for “acceptability” rely upon the concept of defense:

Definition 3. Given (A, R), an argument b is defended by a set B C A (or B
defends b) iff for any argument a € A, if a attacks b then B attacks a.

An admissible set of arguments according to Dung must be a conflict-free set
which defends all its elements. Formally:

Definition 4. Given (A, R), a conflict-free set B C A is admissible iff each
argument in B is defended by B.

Besides the stable semantics, three more semantics refining admissibility have
been introduced in [5]:

Definition 5. Given a (A, R), a preferred extension is a mazimal (w.r.t. set
inclusion) admissible subset of A. An admissible B C A is a complete extension
iff each argument which is defended by B is in B. The least (w.r.t. set inclusion)
complete extension is the grounded extension.



A First Comparison of Abstract Argumentation Systems 243

3 Tools and Graphs

In the following of this section we describe our benchmark environment. We
organize the content into two subsections: Sec. 3.1 concerns a more detailed
description of the three tools we used in our comparison, while Sec. 3.2 describes
in detail the random networks we generated as benchmark.

3.1 Tools

ASPARTIX. The ASPARTIX® system [7,6] is an ASP-based tool for com-
puting acceptable extensions for a broad range of formalizations of Dung’s AF's
and generalisations, e.g., value-based AFs [2]. ASPARTIX relies on a fixed dis-
junctive Datalog program (ASP also includes default negation) which takes an
instance of an argumentation framework as input, and uses an ASP solver (as
DLV) for computing the type of extension specified by the user. ASPARTIX
is able to solve admissible, stable, complete, grounded, preferred, semi-stable,
ideal, stage, cf2, resolution-based grounded and stage2 extensions.

ConArg. ConArg® [4,3] is a constraint-based tool based on the Java Constraint
Programming solver” (JaCoP), a Java library that provides the Java user with
a Finite Domain Constraint Programming paradigm [12]. All the properties de-
scribing conflict-free, admissible, complete, stable, grounded and preferred ex-
tensions have been modeled and implemented with constraints. In this paper we
consider a (faster) command-line version of ConArg. To model all the seman-
tics presented in Sec. 2 we used MiniZinc®, which is a medium-level constraint
modelling language that can be mapped onto different existing solvers.
Dung-O-Matic. Dung-O-Matic? is an abstract argument computation engine
implemented by the javaDungAF Java class. Dung-O-Matic supports Dung’s
AF's and several of their semantics, namely admissible, complete, eager, grounded,
ideal, preferred, semi-stable, and finally stable. In order to find each of the
proposed extensions, this tool implements a different algorithm presented in
literature; for instance, the grounded semantics is computed with the original
algorithms presented by Dung in [5].

3.2 Networks

Due to the lack of well-established benchmarks using real interaction graphs,
we decided to randomly generate our test networks. To generate random graphs
we adopted two different tools. The first one is Java Universal Network/Graph
Framework (JUNG, http://jung.sourceforge.net), which is a Java software
library for the modeling, generation, analysis and visualization of graphs. With

® http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/

5 https://sites.google.com/site/santinifrancesco/tools/ConArg.zip
" http://www.jacop.eu

8 http://www.minizinc.org

9 http://www.arg.dundee.ac.uk/?page_id=279



244 Stefano Bistarelli, Fabio Rossi and Francesco Santini

Fig.1: An example of a a) Erdds-Rényi, b) Watts-Strogatz, ¢) Kleinberg, and d) a
Barabasi graph, all with around 40 nodes.

JUNG we generated Barabasi [1] and Kleinberg [11] networks. The second library
we used is named NetworkX (http://networkx.github.io), and it consists of
a Python software package for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks. With this tool we were
able to generate Erdds-Rényi [8] and Watts-Strogatz [13]. We use two different
libraries because of their different capabilities: with JUNG we are able to ran-
domly generate directed Barabasi and Kleinberg networks, while NetworkX does
not cover Kleinberg networks at all, and only provides undirected Barabasi ones.
On the other side, NetworkX offers both Watts-Strogatz and Erdés-Rényi net-
works (not present in JUNG). Four examples of these networks are represented
in Fig. 1. Our attention is more focused on testing small-world networks because
we consider real large interaction-graphs as coming from social networks [10, 9].

4 Preliminary Tests and Conclusion

In Fig. 2 and Fig. 3 we show a first comparison among the three systems pre-
sented in Sec. 3.1, testing complete and stable extensions respectively. On the
x-axis we report the exact number of nodes of each set of networks we use: in
each set, we considered 50 random networks for each of the four classes reported
in Sec. 3.2, for a total of 200 networks. On the y-axis we report the average
CPU time to compute all the complete/stable extensions on that given set of
networks. These first tests show that ConArg performs better than the other
two systems, even if ASPARTIX has comparable results.

Performance has been collected using an Intel(R) Core(TM) i7 2.4Ghz pro-
cessor, with 16Gb of RAM. To run ASPARTIX, we have used the last version
of DLV (December 2012) with Gringo v3.0.5 and ClaspD v1.1.4 as extensions.

In this work we have commenced a study on the computational efficiency
of nowadays tools dealing with AFs [5]. Our will is to extend this study un-
der several lines. First, we will show tests on more computationally-demanding
semantics (e.g., preferred extensions), we will test hard problems in Argumen-
tation (e.g., deciding if a set is a preferred extension is CO-NP-complete), and,
finally, we will better define the link with small-world networks, by finding the
most appropriate random-network model. At last, we will test these tools over



A First Comparison of Abstract Argumentation Systems 245

Average CPU Time - Complete Average CPU Time - Stable
1400 1000
900
1200 e
________ 800 TR
T.‘,: 1000 — = aspartix g 700 -
< 5 600
¥ a0 conarg :
& -+~ dung-o-matic E 500
2 2
& 600 - S 400
n., . $
g ; :
< 400 L2~ < 300 7
3 —c——— . -
o /— 200 N >~
: . ; .
200 R 47 100 £ -
; -
....... P, .
0 - 0 L -
10 20 40 60 80 100 10 20 40 60 80 100
Nodes Nodes

Fig. 2: Comparing complete extensions. Fig. 3: Comparing stable extensions.

larger networks (e.g., 1,000 arguments), to check how feasible it is to use them in
a real application, as, for instance, large-scale agreements via microdebates [9].

References

1.

2.

10.

11.

12.

13.

A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509-512, 1999.

T. J. M. Bench-Capon. Persuasion in practical argument using value-based argu-
mentation frameworks. J. Log. Comput., 13(3):429-448, 2003.

S. Bistarelli and F. Santini. A common computational framework for semiring-
based argumentation systems. In European Conference on Artificial Intelligence,
volume 215 of Frontiers in A.I. and Applications, pages 131-136. IOS Press, 2010.
S. Bistarelli and F. Santini. Conarg: A constraint-based computational framework
for argumentation systems. In ICTAI pages 605-612. IEEE, 2011.

P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321-357, 1995.

W. Dvordk, S. A. Gaggl, J. P. Wallner, and S. Woltran. Making use of ad-
vances in answer-set programming for abstract argumentation systems. CoRR,
abs/1108.4942; 2011.

U. Egly, S. A. Gaggl, and S. Woltran. ASPARTIX: Implementing argumentation
frameworks using answer-set programming. In International Conference on Logic
Programming (ICLP), pages 734-738. LNCS, Springer, 2008.

P. Erdés and A. Rényi. On the evolution of random graphs. Bull. Inst. Internat.
Statist, 38(4):343-347, 1961.

S. Gabbriellini and P. Torroni. Large scale agreements via microdebates. In AT,
volume 918 of CEUR Workshop Proceedings, pages 366-377. CEUR-WS.org, 2012.
S. Gabbriellini and P. Torroni. Arguments in social networks. In AAMAS, pages
1119-1120. IFAAMAS, 2013.

C. Martel and V. Nguyen. Analyzing Kleinberg’s (and other) small-world models.
In PODC ’04, pages 179-188, New York, NY, USA, 2004. ACM.

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.
D. J. Watts and S. H. Strogatz. Collective dynamics of “small-world” networks.
nature, 393(6684):440-442, 1998.



