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Abstract. Model-Driven Engineering promotes the use of tailor-made
modelling languages for software and systems engineering problems, with
metamodels that encapsulate domain knowledge. Despite the importance
of metamodelling in MDE, there is little empirical analysis of metamod-
els. What are the common characteristics of metamodels? Do modellers
follow best practices? How do metamodels evolve over time? How does
the size and structure of a metamodel affect the models that conform
to it? This paper takes a first step towards answering these questions
by automatically analysing the structural characteristics of a corpus of
more than 500 publicly available Ecore metamodels.

1 Introduction

A common activity in Model-Driven Engineering (MDE) is metamodelling –
the process of capturing the concepts and structures of a particular domain
in a metamodel in order to construct models of that domain. Metamodels ex-
ist for general modelling languages (GMLs), such as UML, and for a range of
domain-specific modelling languages (DSMLs), created to address specific soft-
ware engineering domains. However, there is little guidance on the desirable or
undesirable characteristics of metamodels for GMLs or DSMLs. There has been
much research into the quality of models, but there is little empirical analysis of
metamodels. If we can analyse different properties and calculate various metrics
of metamodels, we may to be able to identify and detect good and bad prac-
tice, and understand the ways in which people are commonly structuring their
metamodels today. The work here was motivated by the need to understand the
common structural aspects of metamodels in order to tailor a model generation
tool towards generating realistic metamodels for testing purposes.

In this paper we reveal common characteristics of metamodels that we have
identified from an automated analysis of a corpus of over 500 publicly-available
Ecore [9] metamodels. This is a first step: once we can analyse metamodels in
different contexts and for different purposes, we can identify patterns of meta-
modelling best practice, and metamodel refactorings that facilitate model op-
erations such as transformation. We can also develop an understanding of how
metamodels evolve over time, and seek to control the complexity of evolving
metamodels to minimise the effects on model artefacts, operations and tools.
Our plan is to produce a set of standard metrics and analyses for metamodels



– similar to what exists in other domains (e.g. OO source code metrics) – and
develop a supporting automated metamodel measurement workbench.

We use a general-purpose model management language, the Epsilon Object
Language [6] (EOL), to compute counts or descriptive statistics on metamodel
characteristics. The analysis shows the range of structural characteristics of
metamodels, identifies some of the common practices of metamodellers – the
most used parts of the metamodelling language, and the ways in which domain
concepts are typically expressed – and raises many further questions about the
commonalities and differences across the metamodelling corpus.

Section 2 introduces a set of metrics, focusing for now on structural analysis
of metamodels. Section 3 presents the results of analysing the corpus of meta-
models, and explores how the structure of one metamodel changed during its
evolution. Section 4 describes related research.

2 Foundations: Structural Properties of Metamodels

The metrics considered in this paper focus on structural properties of meta-
models – understanding how people structure their metamodels and answering
the question what do metamodels really look like? The 19 metrics are examples
of what can be achieved using simple EOL programs. We use EOL as it pro-
vides an executable query language, akin to OCL, that can easily be executed on
metamodels. Our metrics are grouped into two categories: those related to meta-
classes, and those concerning meta-features (attributes and references). The full
list of metrics can be found on our website: www.jamesrobertwilliams.co.uk/
mm-analysis. We summarise them now.

Our initial set of meta-class metrics focuses on the frequencies of meta-classes
with various properties in a metamodel. This includes the total number of meta-
classes metric, which gives an indication of the size of a metamodel, whilst the
total number of concrete meta-classes and the total number of abstract meta-
classes metrics provide more detail. Incidentally, though unintentionally, our
metrics overlap and extend the metrics defined in recent work by Ma et al [7]. We
also define metrics to inspect the number of features in a meta-class. Featureless
classes may be considered to be bad design; detecting these in metamodels would
highlight bad practice. We define metrics on two kinds of featureless meta-class:
immediately featureless classes – those that have no attributes or references, but
may inherit features from a superclass; and completely featureless classes have
absolutely no features. Further metrics might explore the frequency of reference
features, as compared to attribute features, or the distribution of features across
hierarchies. In addition to counting, we can create descriptive statistics such as
means and medians. We also calculate the average number of features per class,
broken down by feature kind (attribute or reference). These metrics can be used
to analyse whether there is a tendency to create many small classes, develop
‘God’ classes, or distribute features across classes.

The metrics concerning meta-features are global – referring to the number
of occurrences of features in an entire metamodel and illustrate how metamod-



ellers commonly define the data (attributes) in metamodels and how they relate
meta-classes to one another. These metrics include: counts of the total number
of features in a metamodel (attribute, references, and combined); the types of
references being defined (containment or non-containment – compositions or as-
sociations in UML terms); and examinations of the upper multiplicity bounds
of references.

3 Analysis: What do Metamodels Really Look Like?

This section uses the metrics overviewed in the previous section to analyse, firstly,
a large number of metamodels in an attempt to the common structural properties
of metamodels. By computing these properties, we hope to inform the community
of how people are modelling domains and attempt to learn how to improve
current practice. Secondly, we analyse the evolution of a large metamodel over
11 minor versions and see how these properties change over time. The analysis
script, the corpus of metamodels, and more detailed results are available online
at: www.jamesrobertwilliams.co.uk/mm-analysis.

3.1 Analysing the Corpus of Metamodels

We have accumulated a corpus of 537 publicly available Ecore [9] metamodels.
The corpus is made up of metamodels collected from GitHub, Google Code, the
AtlantEcore Zoo, the EMFText Zoo, and from internal projects1. The corpus
includes many well known modelling languages – such as the UML, DODAF, and
Marte – as well as metamodels for many programming languages such as Java,
C#, C, and Pascal, and many domain-specific metamodels. We then collated
the scores and now describe the results. Due to space limitations, graphical
visualisations of these statistics can be found at the web page above.

Meta-class Metrics The median total number of meta-classes in the corpus is
13, with a mean of 39.3, a maximum of 912, and a minimum of one. This suggests
that metamodels (at least, in this corpus) are often fairly small. Twelve of the
537 metamodels have a single meta-class. Five of these metamodels are mean-
ingless and should be removed, four were extensions of other metamodels, and
three were domain-specific metamodels which also defined custom data types or
enumeration types. Although small, a single-class metamodel can still define a
suitable modelling language for some domains. The corpus showed that abstract
meta-classes were not popular: 44% of metamodels did not contain a single meta-
class denoted as being abstract. Furthermore, 96% of the corpus has fewer than
20 abstract meta-classes, whereas only 69% of the corpus has fewer than 20 con-
crete meta-classes. This is arguably due to the small average size of the corpus:

1 GitHub: github.com; Google Code: code.google.com; AtlantEcore Zoo: www.emn.
fr/z-info/atlanmod/index.php/Ecore; EMFText Zoo: www.emftext.org/index.

php/EMFText_Concrete_Syntax_Zoo



smaller metamodels are likely to contain only concrete classes, whereas large
metamodels are more likely to utilise abstract classes. Featureless classes were
uncommon: 58% of the corpus has no completely featureless classes, and 27%
have no immediately featureless classes. Interestingly, in the UML metamodel
(developed by the Eclipse UML2 project (http://www.eclipse.org/uml2/))
50 of the 227 meta-classes were immediately featureless, 40 of those were con-
crete. Immediately featureless classes are much more common than completely
featureless ones, and it is more likely that these immediately featureless classes
are concrete. Further analysis would likely show that these are specialisations of
abstract classes, perhaps to provide some extra semantics to the hierarchy.

Meta-feature Metrics The median number of meta-features per metamodel
is 23.5, with a mean of 69.2, a maximum of 2410, and a minimum of zero.
Metamodels in the corpus commonly have more references (median 13.5, mean
43.0) than attributes (median 8, mean 26.2). The average metaclass has 2.1
features: 1.15 references and 0.95 attributes. The large number of featureless
classes present in the corpus affects these data. If we exclude featureless classes
when calculating the average features per class, we obtain the same distributions,
although the mean number of features per meta-class increases slightly to 2.3,
with 1.3 references and 1.0 attributes.

On average metamodels contain more non-containment references (median
6, mean 27.3) than containment references (median 5, mean 15.7). With respect
to reference upper bounds, we find that they are set to ‘one’ 52% of the time, to
‘many’ 47% of the time, and are explicitly given a value just 1% of the time. The
trend towards selecting ‘many’ as opposed to explicitly defining an upper bound
might be attributed to the inherent uncertainty in modelling [11] (of course,
sometimes specifying an upper bound as ‘many’ is perfectly acceptable and not
related to domain uncertainty).

3.2 Analysing the Evolution of a Metamodel

The previous analysis considered only one fixed state of each metamodel, and
doesn’t capture how these properties change over time. Understanding how
metamodels evolve can provide many insights, such as highlighting smells or
anti-patterns [4]. Moreover, developers of metamodelling tools can use the infor-
mation to provide the most appropriate support for practitioners, such as for the
development of model migration [8] tools. We analyse 11 versions of the Graph
metamodel, part of the Graphical Modeling Framework [5], an Eclipse project
for developing graphical editors for modelling languages. We analyse versions
1.23 to 1.33 inclusive. More detailed results can be found on our web page.

The analysis exposed some major structural refactorings that occurred at ver-
sion 1.29. The total number of meta-classes stays constant, however the number
of concrete classes decreases by 25%. These structural refactorings also mani-
fest in the total number of features, increasing at version 1.29, whilst the aver-



age number of features per classes stays fairly constant. Perhaps most reveal-
ing, however, are the featureless classes metrics. Many newly introduced classes
were immediately featureless, and the change in numbers of abstract and con-
crete meta-classes suggests that concrete-classes were refactored to abstract. The
number of totally featureless classes, however, stayed constant, suggesting that
meta-classes were introduced as specialisations, and these refactorings were a
reorganisation of the class hierarchy.

This analysis only considers the evolution of a single metamodel. It would
be interesting to discover whether the behaviour shown in this example is com-
monly found in other metamodels, or to see whether we can discover patterns of
evolution by analysing a large number of metamodel evolutions. Unfortunately,
however, these intermediate models may not be available in all cases.

3.3 Threats to Validity

Although we have analysed a large number of metamodels, we need to be careful
with our conclusions. Almost all of the metamodels in the corpus were publicly
available and downloaded from the internet. These metamodels may not be rep-
resentative of the metamodels that are used in industry. Many of the metamodels
were of well known modelling languages (e.g. UML, CORBA’s IDL, DODAF)
which are used in industry, but the corpus may not represent the bespoke mod-
elling languages that are developed in practice. Furthermore, all of the meta-
models that were analysed were Ecore metamodels. Different metamodelling
technologies may have differing properties, and the metamodelling language it-
self may cause the kinds of behaviour shown in this paper. Ecore, however, is
arguably the current de facto modelling language and is equivalent to EMOF so
the insights that it offers are still useful.

4 Related Work

While there is a significant amount of work in the field of analysis of MDE arte-
facts, the majority of the related work we have encountered has a different focus
to this paper. The closest work to ours is Cadavid et al [2] who present an empir-
ical analysis of the ways MOF and OCL are used together. They define metrics
to analyse the complexity of 33 metamodels, their constraints, and the coupling
between the two. The work in this paper aims to complement the work of Ca-
david et al. with deeper analysis of the metamodel structure (as opposed to its
relationship with its constraints). Vepa et al. [10] measure a set of metamodels
that is stored in the Generative Modeling Technology/ATLAS MegaModel Man-
agement (GMT/AM3) Repository. This work focuses on the model repository
and the measuring technique, rather than the presentation of the results of the
analysis. Finally, Arendt et al. [1] describe an Eclipse plugin, EMF Metrics, that
can be used to assess the quality of EMF metamodels based on nine quantitative
criteria. The aforementioned approaches focus mainly on model quality (as with
software), while we (and Cadavid) are interested in understanding the usage of
metamodelling languages and how metamodels are constructed.



5 Conclusion

In this paper we have posited the need for a deeper understanding of metamod-
els. We illustrate structural analysis on a corpus of over 500 metamodels, gaining
insight into how metamodels are commonly structured, and how they evolve over
time. We are now in a position to start the analysis of good and bad practice
in metamodelling, for GMLs or DSMLs, and in different model management
contexts. To facilitate development of further metrics, we are creating a metrics
metamodel. We plan to create a web-based automated metamodel measurement
workbench that allows users to upload and analyse their own metamodels, which
will automatically augment to the results given here. We plan to devise a com-
prehensive set of metrics, and develop state-of-the-art analyses for metamodels,
taking inspiration from similar domains, such as bad smell detection [4] and
design patterns [3].
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