
Suite of Tools for Pattern-Based
Transformation of OWL Ontologies

Ondřej Zamazal, Marek Dudáš, Ján Černý, and Vojtěch Svátek

University of Economics, W. Churchill Sq.4, 130 67 Prague 3, Czech Republic
{ondrej.zamazal|xdudm12|xcerj121|svatek}@vse.cz

Motivation The high expressivity of OWL enables us to express the same con-
ceptualization in different ways. A simple example is the difference between
‘class-centric’ and ‘property-centric’ modeling styles, such that the same notion
is modeled as a class in the former (e.g. ‘Purchase’) and an object property
in the latter (e.g. ‘bought from’). Similarly, concept subordination can be ex-
pressed via a subclass hierarchy or via individuals connected by a dedicated
property (ontology simplification as in SKOS). Style heterogeneity contributes
to conceptual heterogeneity on the Semantic Web and thus represent an obsta-
cle to reusing ontologies in advanced semantic web scenarios. In particular, two
ontologies modeled in different styles are difficult to match or to import to one
another. Furthermore, opting for a style when designing an ontology may have
impact on the usability and performance of reasoners, as some features cause
performance problems for certain reasoners. Finally, ontology designers may need
help with inspection and repair of entity naming in an ontology.

PatOMat In our approach [2] we come up with ontology transformation frame-
work PatOMat, which is based on transformation patterns (TP).1 A TP con-
tains two ontology patterns (the source OP and the target OP) and the de-
scription of transformation betweem them, called pattern transformation (PT).
The representation of OPs is based on OWL 2, except that placeholders are
allowed in addition to concrete OWL entities. Furthermore, there is the nam-
ing aspect of the OP, which is important for its detection. A PT consists of a
set of transformation links and a set of naming transformation patterns. Nam-
ing transformation patterns serve for generating names for target entities. The
framework prototype implementation is available either as a Java library or as
three RESTful services.2 The whole transformation is divided into three steps
that correspond to the three core services: OntologyPatternDetection service as-
signing entity placeholders, InstructionGenerator generating general and specific
transformation instructions, and OntologyTransformation service transforming
an ontology according to transformation instructions. These services are based
on our specific implementation over OWL-API3 and Jena.4 Transformation pro-
cess is decomposed into parts in order to enable an user intervention.

1 There is also fully-fledged tutorial at http://owl.vse.cz:8080/tutorial/.
2 All accessible via the web interface at http://owl.vse.cz:8080/.
3 http://owlapi.sourceforge.net/
4 http://jena.sourceforge.net/

Tools In order to support smooth application of TPs we implemented several
graphical tools. Transformation Pattern Editor (TPEditor) [1] supports author-
ing and updating of transformation patterns. It allows their graphical modelling
and export/import from/to the (XML-based) TP notation. TPEditor is avail-
able as a plugin for Eclipse. Graphical User Interface for Pattern-based Ontology
Transformation (GUIPOT) is a Protégé plugin allowing the user to go through
all steps of transformation via a standard working environment of a knowledge
engineer [3]. The Importing transformation wizard supports the ontology import
use case in the sense that the user can select a content ontology design pattern, an
ontology and a transformation pattern, and a specific process will be performed.
This wizard is integrated into the eXtreme Design tool supporting pattern-based
ontology development and this can be plugged5 into Eclipse as well as into the
NeOn toolkit.6 The Naming repair plugin supports the naming repair use case.
It is integrated into the Ontology Repair and Enrichment toolkit. (ORE)7 Next,
there is a web-based Downgrading application supporting the language profiling
use case.8 Following the input of the source ontology URI (and selected TP in
the ‘one construct transformation’ use case), the transformed ontology is output
together with a brief transformation log. Next, we are working on web-based vari-
ants of tools for editing/applying transformation patterns. This will be available
as Portal of Applicable Transformation Patterns integrating the Web-based Cat-
alogue of Ontology Transformation Patterns (WebCOP) consisting information
about each TP, Web-based Editor of Ontology transformation Patterns (WE-
dOP) and RESTful services for launching the transformation steps.

Demo This demo is successor of the demo [3] presented at EKAW 2012. The
main enhancement since then will be the integration into ORE and the web-
based integration of tools (i.e. WebCOP, WEdOP and RESTful services). While
the former has already been completed, we are still working on the latter (it will
be available at the time of workshop). Additionally, there are two new use-cases
on which we can demonstrate ontology transformation: Ontology Naming Repair
and Ontology Simplification.

The research is supported by the EU ICT FP7 under No.257943, LOD2 project.

References

1. Šváb-Zamazal O., Daga E., Dudáš M., Svátek V.: Tools for Pattern-Based Trans-
formation of OWL Ontologies. Presented as demo at ISWC’11, Bonn, 2011.

2. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation
Service Exploiting OPPL and OWL-API. In: EKAW-2010, Lisbon, Portugal, 2010.

3. Šváb-Zamazal O., Dudáš M., Svátek V.: User-Friedly Pattern-Based Transformation
of OWL Ontologies. Demo session at EKAW 2012, Galway, Ireland, 2012.

5 Information about these tools is available at http://owl.vse.cz:8080/tools.html
6 http://neon-toolkit.org/wiki/Main_Page
7 http://ore.aksw.org/ore
8 Available from http://owl.vse.cz:8080/Downgrading/.

