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Abstract. The problem of exchanging knowledge bases from a source signature
to a target signature connected through a mapping has recently attracted attention
in knowledge representation. In this paper, we study this problem for knowledge
bases and mappings expressed in OWL 2 QL, one of the profiles of the standard
Web Ontology Language OWL 2. More specifically, we consider the member-
ship and non-emptiness problems associated with computing universal solutions,
which have been identified as one of the most desirable translations to be mate-
rialized. We study two settings: when ABoxes are in OWL 2 QL and when null
values are allowed in the ABox language. For the former case, we provide a novel
technique based on reachability games on graphs to show that the non-emptiness
and membership problems are in PTime. For the latter case, we report a range of
complexity results from NP to EXPTIME. We also consider the problem of com-
puting universal UCQ-solutions, which provide an alternative notion of transla-
tion containing sufficient information to properly answer union of conjunctive
queries, reporting a PSPACE lower bound for the membership problem.

1 Introduction

Complex forms of information, maintained in different formats and organized according
to different structures, often need to be shared between agents. In recent years, both in
the data management and in the knowledge representation communities, several settings
have been investigated that address this problem from various perspectives: in informa-
tion integration, uniform access is provided to a collection of data sources by means of
an ontology (or global schema) to which the sources are mapped [17]; in peer-to-peer
systems, a set of peers declaratively linked to each other collectively provide access to
the information assets they maintain [14,1,13]; in ontology matching, the aim is to un-
derstand and derive the correspondences between elements in two ontologies [11,20];
finally, in data exchange, the information stored according to a source schema needs to
be restructured and translated so as to conform to a target schema [12,8].

The work we present in this paper is inspired by the latter setting, investigated in
databases. We study it, however, under the assumption of incomplete information typi-
cal of knowledge representation [5]. Specifically, we investigate the problem of knowl-
edge base exchange, where a source knowledge base (KB) is connected to a target KB
by means of a declarative mapping specification, and the aim is to exchange knowledge
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from the source to the target by exploiting the mapping. We rely on a framework for KB
exchange proposed recently in [2,3,4], based on lightweight Description Logics (DLs)
of the DL-Lite family [9]: both source and target are KBs constituted by a DL TBox,
representing implicit information, and an ABox, representing explicit information, and
mappings are sets of DL concept and role inclusions.

In this paper, we adjust the above mentioned framework to OWL 2 QL [19], one
of the profiles of the standard Web Ontology Language OWL 2 [7], and then study the
problem of computing universal solutions, which have been identified as one of the
most desirable translations to be materialized. We investigate both the task of checking
membership, where a candidate universal solution is given and one needs to check its
correctness, and non-emptiness, where the aim is to determine the existence of a univer-
sal solution. We prove that both problems can be solved in PTIME using a novel reduc-
tion to the problem of finding a winning strategy in reachability games on graphs [18].

Then, we argue that for certain natural shapes of source KBs and mappings the uni-
versal solutions do not exist, unless null values are allowed in ABox languages. So, we
consider extended ABoxes that may contain nulls, presenting a number of complexity
results ranging from NP to EXPTIME for this setting.

Finally, we consider universal UCQ-solutions, an alternative notion for materializa-
tion of knowledge in the target that contains sufficient information to answer unions of
conjunctive queries. We show that universal UCQ-solutions exist for certain source KBs
and mappings, where universal solutions (even with extended ABoxes) do not. We also
report PSPACE-hardness for the membership problem for universal UCQ-solutions.

The paper is organized as follows. We give preliminary notions on DLs and queries
in Section 2, and on KB exchange in Section 3. In Section 4, we present the known
results and give some intuition about the shape of universal solutions. In Sections 5
and 6, we present the results on the complexity of computing universal solutions for
KBs and extended KBs, respectively. In Section 7, we consider universal UCQ-solutions
and in Section 8, we present conclusions and outline some future work.

2 Preliminaries

The DLs of the DL-Lite family [6] are characterized by the fact that standard reasoning
can be done in polynomial time. We adapt here DL-LiteR, and present now its syntax
and semantics. Let NC , NR, Na, N` be pairwise disjoint sets of concept names, role
names, constants, and labeled nulls, respectively. Assume in the following thatA ∈ NC
and P ∈ NR; in DL-LiteR,B andC are used to denote basic and arbitrary (or complex)
concepts, respectively, and R and Q are used to denote basic and arbitrary (or complex)
roles, respectively, defined as follows:

R ::= P | P−
Q ::= R | ¬R

B ::= A | ∃R
C ::= B | ¬B

Below, for a basic roleR, we useR− to denote P− whenR = P , and P whenR = P−.
A TBox is a finite set of concept inclusions B v C and role inclusions R v Q.

We call an inclusion of the form B1 v ¬B2 or R1 v ¬R2 a disjointness assertion. An
ABox is a finite set of membership assertions B(a), R(a, b), where a, b ∈ Na. Here,
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we also consider extended ABoxes, obtained by allowing labeled nulls in membership
assertions. Formally, an extended ABox is a finite set of membership assertions B(u)
and R(u, v), where u, v ∈ (Na ∪N`). We denote by Ind(A) the set of constants occur-
ring in A. Moreover, a(n extended) KB K is a pair 〈T ,A〉, where T is a TBox and A is
an (extended) ABox. A signatureΣ is a finite set of concept and role names. A KBK is
said to be defined over (or simply, over)Σ if all the concept and role names occurring in
K belong to Σ (and likewise for TBoxes, ABoxes, concept inclusions, role inclusions,
and membership assertions). An interpretation I of Σ is a pair 〈∆I , ·I〉, where ∆I

is a non-empty domain and ·I is an interpretation function such that: (1) AI ⊆ ∆I ,
for every concept name A ∈ Σ; (2) P I ⊆ ∆I × ∆I , for every role name P ∈ Σ;
and (3) aI ∈ ∆I , for every constant a ∈ Na. Function ·I is extended to also interpret
concept and role constructs: (1) (∃R)I = {x ∈ ∆I | ∃y ∈ ∆I such that (x, y) ∈ RI};
(2) (¬B)I = ∆I \ BI ; (3) (P−)I = {(y, x) ∈ ∆I × ∆I | (x, y) ∈ P I}; and
(4) (¬R)I = (∆I×∆I)\RI . Note that, consistently with the semantics of OWL 2 QL,
we do not make the unique name assumption, i.e., distinct constants a, b ∈ Na may be
interpreted as the same object. Note also that labeled nulls are not interpreted by I.

Let I = 〈∆I , ·I〉 be an interpretation over a signature Σ. Then I is said to satisfy
a concept inclusion B v C over Σ, denoted by I |= B v C, if BI ⊆ CI ; I is said
to satisfy a role inclusion R v Q over Σ, denoted by I |= R v Q, if RI ⊆ QI ;
and I is said to satisfy a TBox T over Σ, denoted by I |= T , if I |= α for every
α ∈ T . Moreover, satisfaction of membership assertions over Σ is defined as follows.
A substitution over I is a function h : (Na ∪ N`) → ∆I such that h(a) = aI for
every a ∈ Na. Then I is said to satisfy an (extended) ABox A, denoted by I |= A,
if there exists a substitution h over I such that: (1) for every B(u) ∈ A, it holds that
h(u) ∈ BI ; and (2) for every R(u, v) ∈ A, it holds that (h(u), h(v)) ∈ RI . Finally,
I is said to satisfy a(n extended) KB K = 〈T ,A〉, denoted by I |= K, if I |= T and
I |= A. Such I is called a model of K, and we use MOD(K) to denote the set of all
models of K. We say that K is consistent if MOD(K) 6= ∅. As is customary, given an
(extended) ABox A over a signature Σ and a membership assertion α over Σ, we use
notation A |= α to indicate that for every interpretation I of Σ, if I |= A, then I |= α
(and likewise for (extended) KBs).

We also need to introduce the notions of Σ-types and Σ-homomorphisms. For an
interpretation I and a signature Σ, the Σ-types tIΣ(x) and rIΣ(x, y) for x, y ∈ ∆I are
given by the set of concepts B and roles R over Σ, respectively, such that x ∈ BI and
(x, y) ∈ RI . We also use tI(x) and rI(x, y) to refer to the types over the signature
of all DL-LiteR concepts and roles. A Σ-homomorphism from an interpretation I to an
interpretation J is a function h : ∆I 7→ ∆J such that h(aI) = aJ , for all individual
names a interpreted in I, tIΣ(x) ⊆ tJΣ(h(x)) and rIΣ(x, y) ⊆ rJΣ(h(x), h(y)) for all
x, y ∈ ∆I . We say that I is Σ-homomorphically embeddable into J if there exists a
Σ-homomorphism from I to J . If Σ is the set of all DL-LiteR concepts and roles, we
call Σ-homomorphism simply homomorphism.

DL-LiteR enjoys the canonical model property. Let K = 〈T ,A〉 be a (non-
extended) KB, and vRT the reflexive and transitive closure of the role relation on
the set of all basic roles over NR induced by T (that is, the reflexive and transi-
tive closure of {(R1, R2) | R1 v R2 ∈ T or R−1 v R−2 ∈ T }). Then define
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[R] = {S | R vRT S and S vRT R}, [R] ≤T [S] if R vRT S, and a generating
relationship K as follows:

– a  K w[R], if (1) K |= ∃R(a); (2) K 6|= R(a, b) for every b ∈ Na; (3) [R′] = [R]
for every [R′] such that [R′] ≤T [R] and K |= ∃R′(a).

– w[S]  K w[R], if (1) T |= ∃S− v ∃R; (2) [S−] 6= [R]; (3) [R′] = [R] for every
[R′] such that [R′] ≤T [R] and T |= ∃S− v ∃R′.

Denote by path(K) the set of all K-paths, where a K-path is a sequence
aw[R1] . . . w[Rn] such that n ≥ 0, a ∈ Na, a  K w[R1] and w[Ri]  K w[Ri+1] for
1 ≤ i ≤ n− 1. Moreover, for every σ ∈ path(K), denote by tail(σ) the last element in
σ. Finally, the canonical (or, universal) model of K, denoted UK, is defined as:

∆UK = path(K),
aUK = a, for a ∈ Na,
AUK = {a ∈ Ind(A) | K |= A(a)} ∪ {σ · w[R] ∈ ∆UK | T |= ∃R− v A},
PUK = {(a, b) ∈ Ind(A)× Ind(A) | K |= P (a, b)} ∪

{(σ, σ · w[R]) | tail(σ) K w[R], [R] ≤T [P ]} ∪
{(σ · w[R], σ) | tail(σ) K w[R], [R

−] ≤T [P ]}.

Theorem 1 ([16]). If K is consistent, UK is a model of K. For every model I |= K,
there exists a homomorphism from UK to I.

Queries and certain answers. A k-ary query q over a signature Σ, with k ≥ 0, is
a function that maps every interpretation 〈∆I , ·I〉 of Σ into a k-ary relation qI ⊆
(∆I)k. Given a (non-extended) KB K over Σ, the set of certain answers to q over
K, denoted by cert(q,K), is defined as:

⋂
I∈MOD(K){(a1, . . . , ak) | {a1, . . . , ak} ⊆

Na and (aI1 , . . . , a
I
k ) ∈ qI}. A conjunctive query (CQ) over a signatureΣ is a formula

of the form q(x) = ∃y. ϕ(x,y), where x, y are tuples of variables and ϕ(x,y) is a
conjunction of atoms of the form A(t), with A a concept name in Σ, and P (t, t′), with
P a role name inΣ, where each of t, t′ is either a constant fromNa or a variable from x
or y. Given an interpretation I = 〈∆I , ·I〉 ofΣ, the answer of q over I, denoted by qI ,
is the set of tuples a of elements from ∆I for which there exist a tuple b of elements
from ∆I such that I satisfies every conjunct in ϕ(a, b). A union of conjunctive queries
(UCQ) over a signature Σ is a formula of the form q(x) =

∨n
i=1 qi(x), where each qi

(1 ≤ i ≤ n) is a CQ over Σ, whose semantics is defined as qI =
⋃n
i=1 q

I
i .

3 Knowledge Base Exchange Framework for OWL 2 QL

Assume that Σ1, Σ2 are signatures with no concepts or roles in common. An inclusion
E1 v E2 is said to be from Σ1 to Σ2, if E1 is a concept or a role over Σ1 and E2 is
a concept or a role over Σ2. A mapping is a tuple M = (Σ1, Σ2, T12), where T12 is
a TBox consisting of inclusions from Σ1 to Σ2 [2]. The semantics of such a mapping
is defined in [2] in terms of a notion of satisfaction for interpretations, which has to
be extended in our case to deal with interpretations not satisfying the unique name
assumption (and, more generally, the standard name assumption). More specifically,
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given interpretations I, J of Σ1 and Σ2, respectively, pair (I,J ) satisfies TBox T12,
denoted by (I,J ) |= T12, if (1) for every a ∈ Na, it holds that aI = aJ , (2) for
every concept inclusion B v C ∈ T12, it holds that BI ⊆ CJ , and (3) for every
role inclusion R v Q ∈ T12, it holds that RI ⊆ QJ . Notice that the connection
between the information in I and J is established through the constants that move
from source to target according to the mapping. For this reason, we require constants to
be interpreted in the same way in I and J , i.e., they preserve their meaning when they
are transferred. Finally, SATM(I) is defined as the set of interpretations J of Σ2 such
that (I,J ) |= T12, and given a set X of interpretations of Σ1, SATM(X ) is defined as⋃
I∈X SATM(I).

The main problem studied in the knowledge exchange area is the problem of trans-
lating a KB according to a mapping, which is formalized through several different no-
tions of translation. LetM = (Σ1, Σ2, T12) be a mapping, K1 = 〈T1,A1〉 a KB over
Σ1 and K2 = 〈T2,A2〉 an extended KB over Σ2. The first such notion is the con-
cept of solution, which is formalized as follows: K2 is a solution for K1 under M if
MOD(K2) ⊆ SATM(MOD(K1)). Thus,K2 is a solution forK1 underM if every inter-
pretation of K2 is a valid translation of an interpretation of K1 according toM. Then,
K2 is a universal solution for K1 underM if MOD(K2) = SATM(MOD(K1)). Thus,
K2 is designed to exactly represent the space of interpretations obtained by translating
the interpretations of K1 underM [2].

A second class of translations is obtained in [2] by observing that solutions and
universal solutions are too restrictive for some applications, in particular when one only
needs a translation storing enough information to properly answer some queries. For
the particular case of UCQ, this gives rise to the notions of UCQ-solution and universal
UCQ-solution. Let K1,M as above and K2 a KB over Σ2. Then K2 a UCQ-solution
for K1 under M if for every query q ∈ UCQ over Σ2: cert(q, 〈T1 ∪ T12,A1〉) ⊆
cert(q,K2), while K2 is a universal UCQ-solution for K1 underM if for every query
q ∈ UCQ over Σ2: cert(q, 〈T1 ∪ T12,A1〉) = cert(q,K2).

Arguably, the most important problem in knowledge exchange [5,2], as well as in
data exchange [12,15], is the task of computing a translation of a KB according to a
mapping. To study the complexity of this task for the notions of solution just presented,
we introduce the following decision problems. The membership problem for universal
solutions (resp. universal UCQ-solutions) has as input a mappingM = (Σ1, Σ2, T12),
a KB K1 over Σ1, and an extended KB K2 (resp. a KB K2) over Σ2. Then the question
to answer is whether K2 is a universal solution (resp. universal UCQ-solution) for K1

underM. In the non-emptiness problem for universal solutions the input is the same,
except for K2, and the question to answer is whether a universal solution K2 exists
(analogously for universal UCQ-solutions). The non-emptiness problems are directly
related with the problem of computing translations of a KB according to a mapping.

4 The Shape of Universal Solutions

In what follows, we show some known results and examples of universal solutions.
First of all, it was shown in [3] that a KB K2 = 〈T2,A2〉 (extended or not) over Σ2 is a
universal solution for K1 = 〈T2,A2〉 over Σ1 underM = (Σ1, Σ2, T12) only if TBox
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T2 is trivial (we call a TBox T trivial if T is equivalent to the empty set of formulas).
Therefore, in the context of universal solutions, we only consider target KBs of the form
〈∅,A2〉, and we treat ABoxes A2 as such KBs.

Example 1. Assume that M =
(
{A(·), B(·)}, {A′(·), B′(·)}, {A v A′, B v B′}

)
,

and let K1 = 〈T1,A1〉, where T1 = {} and A1 = {A(a), B(b)}. Then the ABox
A2 = {A′(a), B′(b)} is a straightforward universal solution for K1 underM.

It can be shown (c.f. Lemma 1) that in the language without disjointness assertions,
an ABox A2 is a universal solution for 〈T1,A1〉 under M = (Σ1, Σ2, T12) if and
only if UA2 is Σ2-homomorphically equivalent to U〈T1∪T12,A1〉. This fact is used in the
following more involved example:

Example 2. Assume M =
(
{A(·), R(·, ·), S(·, ·)}, Σ2, T12

)
where Σ2 = {Q(·, ·)},

T12 = {R v Q,S v Q}, and thatK1 = 〈T1,A1〉, where T1 = {A v ∃R,∃R− v ∃R}
and A1 = {A(a), S(a, a)}. Let A2 = {Q(a, a)}. In the following picture, it is easy
to see h is a Σ2-homomorphism from U〈T1∪T12,A1〉 to UA2

. The existence of a Σ2-
homomorphism in the other direction is trivial and, hence,A2 is a universal solution for
K1 underM.

UA2 :
a

Q

Σ2-reduct of
U〈T1∪T12,A1〉

:
a aw[R] aw[R]w[R] aw[R]w[R]w[R]

· · ·
Q Q Q

Q

h

The following example shows that extended ABoxes are necessary to guarantee the
existence of universal solutions in certain cases.

Example 3. Assume thatM =
(
{A(·), R(·, ·)}, {B(·)}, {∃R− v B}

)
, and let K1 =

〈T1,A1〉, where T1 = {A v ∃R} and A1 = {A(a)}. Then the ABox A2 = {B(n)},
where n is a labeled null, is a universal solution for K1 underM if nulls are allowed.
Notice that here, a universal solution with non-extended ABoxes does not exist: substi-
tuting n by any constant is too restrictive, ruining universality.

Finally, we discuss the impact of disjointness assertions on the universal solutions.

Example 4. Consider Example 1 with T1 = {A v ¬B}. With this seemingly harmless
disjointness assertion A2 is no longer a universal solution (not even a solution) for K1

under M. The reason for that is the lack of the unique name assumption on the one
hand, and the presence of the disjointness assertion in T1 that forces a and b to be
interpreted differently in the source, on the other hand. Thus, for a model J ofA2 such
that aJ = bJ , A′J = B′J = {aJ }, there is no model I of K1 such that (I,J ) |= T12
(hence, aI = aJ and bI = bJ ). In general, there is no universal solution for K1 under
M, even though K1 and T12 are consistent with each other.

The problem raised by the latter example could be solved by allowing for inequal-
ities between constants in the ABoxes. A similar problem appears with disjointness
assertions in the mapping, but it requires negative facts to be present for a universal so-
lution to exist (i.e., facts of the form¬A(a),¬P (a, b)), which are not part of OWL 2 QL.
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On the other hand, having disjointness assertion in the source or the mapping does not
exclude the existence of universal UCQ-solutions, which is explained in Example 6.

5 Computing Universal Solutions: The Case of Knowledge Bases

In this section, we show that both the membership and the non-emptiness problems for
universal solutions without null values are in PTIME.

Assume that Σ1, Σ2 are disjoint signatures, and that K = 〈T1 ∪ T12,A1〉 is a KB
such that T1 is defined over Σ1 and T12 is a set of inclusions from Σ1 to Σ2. Moreover,
let UK be the canonical model of K. Then a basic concept B over Σ1 is said to be safe
in UK if d 6∈ Na and tUKΣ2

(d) = ∅ for every d ∈ BUK . Intuitively, safeness for B means
no constant “associated” with B and no target concept that is “associated” with B via
T1 and T12 will be mentioned in the target; in Example 4 neither A nor B is safe in
U〈T1∪T12,A1〉. Furthermore, a pair of basic concepts (B,C) is is said to be safe if B or
C is safe. Intuitively, if a pair (B,C) is not safe and (B v ¬C) ∈ T1, then universal
solution cannot exist, as explained in Example 4. Similarly, we say a basic role R over
Σ1 is safe if either d 6∈ Na and tUKΣ2

(d) = ∅, or d′ 6∈ Na and tUKΣ2
(d′) = ∅, for every

(d, d′) ∈ RUK . A pair of roles (R,Q) is safe if 1) R or Q is safe, and 2) tUKΣ2
(d′) = ∅

or tUKΣ2
(d′′) = ∅ for every d, d′, d′′ ∈ ∆UK such that (d, d′) ∈ RUK and (d, d′′) ∈ QUK .

Lemma 1. A KB K2 = 〈T2,A2〉 over Σ2 is a universal solution for a KB K1 =
〈T1,A1〉 under a mappingM = (Σ1, Σ2, T12) iff the following conditions hold:

(tr) T2 is a trivial TBox,
(hom) UA2

is Σ2- homomorphically equivalent to U〈T1∪T12,A1〉,
(ps1) each pair of concepts (B,C) is safe in U〈T1∪T12,A1〉 whenever (B v ¬C) ∈ T1,
(pm1) BUK = ∅ for each basic concept B such that (B v ¬B′) ∈ T12,
(ps2) each pair of roles (R,Q) is safe in U〈T1∪T12,A1〉 whenever (R v ¬Q) ∈ T1,
(pm2) RUK = ∅ for each basic role R such that (R v ¬R′) ∈ T12.

It can be readily verified that conditions (tr), (ps1), (ps2), (pm1), (pm2) and the exis-
tence of a Σ2-homomorphism from UA2

to U〈T1∪T12,A1〉 required by (hom), are solv-
able in polynomial time. To solve the problem of existence of a Σ2-homomorphism in
the opposite direction, we are going to employ the technique of reachability games on
graphs. Below we present the required basic notions.

5.1 Reachability games on graphs

A game is defined by a game graph (a playground) and a winning condition. A game
graph is a tripleG = (S0, S1, T ), where S = S0∪S1 is a finite set of states, S0∩S1 = ∅
and T ⊆ S × S is a transition relation. The game starts in some state s0 ∈ S, and it
is played in turns. In each turn, if the current state s is in Si (i = 0, 1), then Player i
chooses some state s′ ∈ S such that (s, s′) ∈ T . Thus, each play in the game is viewed
as a path π, which can be infinite (π = s0, s1, s2, . . ., where si ∈ S and (si, si+1) ∈ T
for every i ≥ 0) or finite (π = s0, s1, s2, . . . , sk ∈ Sk+1, where (si, si+1) ∈ T for
every i ∈ {0, . . . , k − 1} and {s | (sk, s) ∈ T} = ∅).
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The winning condition defines what are the plays won by Player 0. We will consider
a reachability acceptance condition specified as follows: given a set of accepting states
F ⊆ S, a play π is a win for Player 0 iff some vertex from F occurs in π. Finally, a
reachability game is a pair G = (G,F ) where G is a game graph and F is a set of
accepting states.

A strategy for Player 0 from state s is a (partial) function f0 : S∗S0 → S such
that it assigns to each sequence of states s0, s1, . . . , sk with s0 = s and sk ∈ S0, a
successor state sk+1 such that (sk, sk+1) ∈ T . A play π = s0s1 · · · is said to conform
with strategy f0 if si+1 = f0(s0s1 . . . si) for every si ∈ S0. Then, a strategy f0 is a
winning strategy for Player 0 from s ∈ S if every play that conforms with f0 and starts
in s is a win for Player 0.

Proposition 1 ([18], [10]). Given a reachability game G = (G,F ) and a state s in G,
it can be checked in PTIME whether Player 0 has a winning strategy from s.

5.2 The reduction

Assume given a mappingM = (Σ1, Σ2, T12), a KBK1 = 〈T1,A1〉 over Σ1, and a KB
K2 = 〈∅,A2〉 over Σ2 (w.l.o.g., we can assume that the TBox of K2 is empty). Denote
〈T1 ∪ T12,A1〉 by K. We show how the problem of checking whether there exists a
Σ2-homomorphism h from UK to UA2 can be reduced to the problem of existence of a
winning strategy for Player 0 in a reachability game.

First, for such a homomorphism h to exist, it should be the case that

tUKΣ2
(a) ⊆ tUA2 (a) and rUKΣ2

(a, b) ⊆ tUA2 (a, b) for all a, b ∈ Ind(A1). (1)

These conditions can be clearly checked in PTIME.
Now, to check how the elements a ∈ ∆UK with a ∈ Ind(A1) can be mapped on

∆UA2 , we construct a game Ga = (Ga, Fa). The game graph Ga = (S0, S1, T ) has
the set of states of the kind (x, y, p), where x ∈ ∆UA2 , y ∈ {tail(aσ) | aσ ∈ ∆UK},
and p ∈ {s, d}. The states (x, y, s) form S0 and will be called spoiling; intuitively, the
moves going out of such states represent various edges of the tree UK accessible from
the end of the current edge. On the other hand, the states (x, y, d) form S1 and will be
called duplicating; the moves from them “show” how the “challenged” edge of the tree
UK can be “mapped” on UA2

. Notice that the size of Ga is O(|T1 ∪ T12| × |A2|). The
transition relation T is defined as follows:

T = {
(
(x, y, s), (x′, y′, d)

)
| y  K y′ and x′ = x} ∪

{
(
(x, y, d), (x′, y′, s)

)
| y = w[R], cl

T1∪T12
Σ2

(∃R−) ⊆ tUA2 (x′),

clT1∪T12Σ2
(R) ⊆ rUA2 (x, x′), and y′ = y},

where for a TBox T and a concept B, clTΣ(B) is the set of all concepts B′ over Σ such
that T |= B v B′, and for a role R, clTΣ(R) is defined analogously.

The set Fa in the definition of the game is given by the duplicating states that are
“dead ends”, i.e.,

Fa = {(x, y, d) | y = w[R] and for all x′ ∈ ∆UA2 , clT1∪T12Σ2
(∃R−) 6⊆ tUA2 (x′) or

clT1∪T12Σ2
(R) 6⊆ rUA2 (x, x′)}.
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Having constructed the game Ga = (Ga, Fa), we prove that verifying whether the
elements a ∈ ∆UK can be Σ2-homomorphically mapped on ∆UA2 reduces to checking
whether Player 0 has a winning strategy in Ga from the state (a, a, s).

Lemma 2. There exists aΣ2-homomorphism from UK to UA2
iff (1) holds and for each

a ∈ Ind(A1), Player 0 does not have a winning strategy in Ga from (a, a, s).

The example below illustrates the presented reduction.

Example 5. AssumeM =
(
{R(·, ·), S(·, ·), Q(·, ·)}, Σ2, T12), where Σ2 = {R′(·, ·),

Q′(·, ·)} and T12 = {R v R′, S v R′, Q v Q′}
)
, K1 = 〈T1,A1〉, where

T1 = {∃S− v ∃R,∃R− v ∃Q,∃Q− v ∃Q} and A1 = {∃R(a),∃S(a)}, and
A2 = {R′(a, a), R′(a, b), Q′(b, b)}. Then Fa = {(b, wR, d), (a,wQ, d)}, and the game
graph Ga is depicted in a) below (we ignore the states that are not reachable from
(a, a, s); the duplicating states forming S1 are shown as ovals and the spoiling states
forming S0 are shown as boxes). In b) below we show UK (the domain elements
d ∈ ∆UK are shown as dots, the labels next to them represent tail(d), and the labels
on the edges (d, d′) show the Σ2-role names P , such that (d, d′) ∈ PUK ), in c) we
show UA2

, and the dashed arrows from UK to UA2
show the homomorphism h.

Wa, a, s

a,wS , d a,wR, d

b, wS , s a,wS , s b, wR, s a,wR, s

b, wR, d b, wQ, d a,wQ, d

b, wQ, s

Fa

a) The game graph Ga

a

wS wR

wQ

wQ

wR

wQ

wQ

···

···

R′ R′

Q′

Q′

R′

Q′

Q′

b) Σ2-reduct of U〈T1∪T12,A1〉

a

b

R′

Q′

R′

c) UA2

h

Observe that in the game Ga Player 0 does not have a winning strategy from (a, a, s),
because there is a way for Player 1 to play (infinitely) so that the game never goes out
of the region W shown in a). It is not difficult to see that such strategy of Player 1 can
be used to define the homomorphism h, and vice versa.

Finally, combining Lemma 2, Lemma 1 and Proposition 1 one obtains:

Theorem 2. The membership problem for universal solutions with (non-extended) KBs
is in PTIME.

We conclude this section by addressing the non-emptiness problem. It follows from
Conditions (tr), (hom) that there exists a universal solution for K1 underM iff K2 =
〈∅,A2〉 over Σ2 is a universal solution for K1 underM, where A2 satisfies (i) A2 |=
B(a) iff K |= B(a) and (ii)A2 |= R(a, b) iff K |= R(a, b) for all a, b ∈ Ind(A1 ∪A2),
Σ2-concept B, and Σ2-role R. Obviously, we can construct the required A2 in PTIME,
then it remains to check if K2 above is a universal solution. It follows:
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Theorem 3. The non-emptiness problem for universal solutions with (non-extended)
KBs is in PTIME. Moreover, there is an effective algorithm to compute a universal
solution in polynomial time (if such a solution exists).

6 Computing Universal Solutions: The Case of Extended
Knowledge Bases

We start with the membership problem for extended KBs. Assume given a mapping
M = (Σ1, Σ2, T12), a KB K1 = 〈T1,A1〉 over Σ1, and a KB K2 = 〈∅,A2〉 over Σ2,
where A2 is an extended ABox. It can be shown that an analogue of Lemma 1 holds,
provided that the definition of UA2

is adjusted in an obvious way to account for nulls,
and so is the definition of homomorphism. In this setting, Σ2-homomorphism from
U〈T1∪T12,A1〉 to UA2 can be still checked in PTIME, however, the opposite direction can-
not be checked efficiently due to nulls inA2. In fact, it can be shown by reduction from
the graph 3-colorability problem that the membership problem for universal solutions
with null values is NP-hard. To decide in NP whether there exists a homomorphism h
from UA2

to U〈T1∪T12,A1〉, we can use the fact that the image W ⊆ ∆U〈T1∪T12,A1〉 of
such a function h on ∆UA2 is of polynomial size. Therefore, for each constant and null
inA2, one needs to guess its homomorphic image, and then check whether the resulting
function is a homomorphism. Thus, we obtain:

Theorem 4. The membership problem for universal solutions with extended KBs is
NP-complete.

Consider now the problem of checking whether there exists a universal solution
K2 = 〈∅,A2〉 for K1 underM. This problem turns out to be harder than the member-
ship problem as now candidate solutions are not part of the input. In fact, we show by
reduction from the validity problem for quantified Boolean formulas that checking the
existence of a universal solution is PSPACE-hard. As for the upper bound, first, it can be
shown that such an A2 exists if and only if U〈T1∪T12,A1〉 is Σ2-homomorphically em-
beddable into a finite part of itself. Then, such a finite subset of U〈T1∪T12,A1〉 projected
on Σ2 can be taken as a universal solution for K1 underM. As the inclusion of inverse
roles is one of the main sources of complexity, we use two-way alternating automata on
infinite trees (2ATA), which are a generalization of nondeterministic automata on infinite
trees [21] well suited for handling inverse roles in DL-LiteR. More precisely, given a
KBK, we first show that it is possible to construct the following automata: (1) Acan

K is a
2ATA that accepts trees corresponding to the canonical model ofK with nodes arbitrary
labeled with a special symbol G; (2) Amod

K is a 2ATA that accepts a tree if its subtree
labeled with G corresponds to a tree model I of K (that is, a model forming a tree on
the labeled nulls); and (3) Afin is a (one-way) non-deterministic automaton that accepts
a tree if it has a finite prefix where each node is marked with G, and no other node in
the tree is marked with G. Then to verify whether a KB K1 = 〈T1,A1〉 has a universal
solution under a mappingM = (Σ1, Σ2, T12), we solve the non-emptiness problem for
an automaton B defined as the product automaton of πΓK(Acan

K ), πΓK(Amod
K ) and Afin ,

whereK = 〈T1∪T12,A1〉, πΓK(Acan
K ) is the projection of Acan

K on a vocabulary ΓK not
mentioning symbols from Σ1, and likewise for πΓK(Amod

K ). If the language accepted
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Universal solutions ABoxes Extended ABoxes
Membership PTIME NP-complete
Non-emptiness PTIME PSPACE-hard, in EXPTIME

Fig. 1. Complexity results for universal solutions

by B is empty, then there is no universal solution forK1 underM, otherwise a universal
solution (of exponential size) exists and it can be extracted from the tree accepted by B.

Theorem 5. The non-emptiness problem for universal solutions with extended KBs is
PSPACE-hard and in EXPTIME. Moreover, there is an effective algorithm to compute a
universal solution in exponential time (if such a solution exists).

7 Universal UCQ-solutions

We start by arguing that universal UCQ-solutions exhibit more robust behavior in the
presence of disjointness assertions than universal solutions.

Example 6. ConsiderM,K1, andA2 from Example 4. Recall thatA2 is not a universal
solution for K1 underM. However, A2 is a universal UCQ-solution for K1 underM.
Moreover, A2 remains a universal UCQ-solution for K1 under M independently of
whether the unique name assumption is employed.

Unfortunately, universal UCQ-solutions are also harder to compute, which can be ex-
plained by the fact that TBoxes have bigger impact on the structure of universal UCQ-
solutions rather than of universal solutions. In fact, by using a reduction from the valid-
ity problem for quantified Boolean formulas, similar to a reduction in [16], we are able
to prove the following:

Theorem 6. The membership problem for universal UCQ-solutions is PSPACE-hard.

8 Conclusions

A summary of our results for universal solutions is presented in Figure 1.
In this paper, we have studied the problem of KB exchange for OWL 2 QL, improv-

ing on previously known results both w.r.t. the expressiveness of the ontology language
and w.r.t. the understanding of the computational properties of the problem. Our main
contribution is a novel PTIME algorithm for the membership and non-emptiness prob-
lems for universal solutions when OWL 2 QL ABoxes are considered. Our investigation
leaves open several issues, which we intend to address in the future. For the computation
of universal solutions when extended ABoxes are allowed, while we have pinned-down
the complexity of the membership problem as NP-complete, an exact characterization
for the non-emptiness problem is still missing. Moreover, it is easy to see that allowing
for inequalities between terms and for negated atoms in the (target) ABox would allow
one to obtain more universal solutions, but a full understanding of this case is still miss-
ing. Finally, we intend to investigate the challenging problem of computing universal
UCQ-solutions, adopting also here an automata-based approach.
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8. Pablo Barceló. Logical foundations of relational data exchange. SIGMOD Record, 38(1):49–
58, 2009.

9. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

10. Krishnendu Chatterjee and Monika Henzinger. An o(n2) time algorithm for alternating
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