

Graph-Based Business Process Model Refactoring

María Fernández-Ropero, Ricardo Pérez-Castillo and Mario Piattini

Instituto de Tecnologías y Sistemas de la Información, University of Castilla-La Mancha

Paseo de la Universidad 4, 13071

Ciudad Real, Spain

+34 926295300 Ext. 96697

[MariaS.Fernandez | Ricardo.PdelCastillo |

Mario.Piattini]@uclm.es

Abstract. Companies are ever more interested in process-oriented organiza-

tional designs due to the competitive advantages they can achieve. Companies

must therefore be able to manage their business process models and deal with

quality assurance concerns, especially when business process models are mined

by reverse engineering (e.g. from information systems) since it has harmful ef-

fects on the quality. For example, non-relevant and fine-grained elements or in-

complete processes can be obtained. Refactoring techniques have become a

widely-used method to mitigate those effects, changing the internal structure of

business process models without altering its external behavior. Business process

models can be transformed into graph structures since it has been proved as a

more efficient way to manage information. This work presents IBUPROFEN, a

set of graph-based refactoring algorithms to improve the quality of business

process models. This paper demonstrates its feasibility by conducting a case

study using a set of industrial business process models.

Keywords: Business process model, refactoring, graph-based, understandabil-

ity, modifiability, case study.

1 INTRODUCTION

Business processes depict the set of coordinated activities that companies have to

conduct to achieve their common business goals [1]. Business processes are often

represented by graph models following standard notations such as BPMN (Business

Process Modeling and Notation) [2]. In these graph representations, business activi-

ties or tasks are considered as nodes and sequence flows between these tasks as edges.

These standard representations provides companies with a mean to manage their busi-

ness processes [3], i.e., analyze, execute and adapt their business process in an effec-

tive way. In fact, the appropriate management of business processes led to competi-

tive advantages [4].

16

Unfortunately, business process models (as abstract descriptions) become misa-

ligned regarding business processes that are daily, actually executed. This is due to

daily operations change faster than business process models. In turn, this is owing to

the fact that IT technologies and enterprise information systems evolve over time by

adding new functionalities and operations that are not updated in business process

models [5]. As a consequence, organizations are increasingly interested in quality

assurance of business process representations and models they own.

There are several quality assurance techniques to achieve business process models

with the appropriate quality levels. Business process mining techniques [6] are em-

ployed to obtain business process models from execution logs. Similarly, business

process archeology [7] analyzes existing artifacts such as source code or databases for

discovering and retrieving business process models in line with actual operation. Re-

pairing techniques are devoted to add missing parts and correct business process

models to fit them to the reality [8]. A part from all these techniques, one of the most

applied and well-proven technique is business process model refactoring [9], which

change the internal structure of business process models without altering or modifying

their external behavior, and therefore, improving the understandability and modifia-

bility among other quality features.

Despite standard notations such as BPMN are graph-based, most business process

model refactoring techniques [10-12], hardly ever are designed as algorithms that

manage graphs. Instead, most refactoring techniques consider, for example, business

processes as two isolated, linear sets of business tasks and sequence flows. This de-

sign decision probably is better for the effectiveness of the refactoring algorithms but

has harmful effects in terms of efficiency. This means that non-graph-based algo-

rithms could have time-consuming problems when face with large, complex business

process models. In fact, the usage of graph in different contexts [13-15] proved to be

much more efficient than any other data structure. Due to this fact, this paper propos-

es IBUPROFEN, a business process refactoring approach based on graphs.

IBUPROFEN defines a set of algorithms that are grouped into three categories ac-

cording to the quality assurance challenge that address: maximization of relevant

elements, reduction of fine-grained granularity and completeness. This paper depicts

how business process models are managed as graphs and how are refactored accord-

ing to the set of graph-based algorithms proposed in IBUPROFEN. This paper illus-

trates the usage of IBUPROFEN by means of a case study involving business process

models obtained from real-life information systems, some of which are around 255

nodes and 512 edges.

The remainder of this paper is organized as follows: Section 2 summarizes related

work; Section 3 introduces IBUPROFEN, the business process refactoring approach.

Hence, their graph-based refactoring algorithms are shown as well as their implemen-

tation; Section 4 presents the application of the proposal with real-life business pro-

cess models. Finally, Section 5 discusses conclusions and future work.

17

2 RELATED WORKS

There are various approaches in literature which deal with business process model

refactoring by using different data structures. Dijkman et al. [10] identify refactoring

opportunities in process model repositories. In order to identify similar parts in two

different process models, these authors decompose both process models into smaller

parts. They use a Refined Process Structure Tree (RPST) where the smaller parts of

the decomposition are connected sub-graphs, such that control enters the fragment via

a single entry node and leaves the fragment via a single exit node. The RPST defines a

unique decomposition, i.e., a hierarchy of fragments that can be computed in linear

time. The main difference of this work with our approach is that they use hierarchical

structures and graphs in combination.

La Rosa et al. [12] provide a set of modularization of business process models

based on graphs. This approach proposes, for example, horizontal modularization by

obtaining sub-graphs of nearly equal size while keeping the number of cut edges low.

However, not all the modularization and refactoring algorithms are based on graphs.

Similarly, the Proviado approach [16] applies a combination of graph reduction

(Omission) and graph aggregation (Collapse) techniques to obtain customized process

views based on a user query. The main difference of this work is that deal with visual-

ization more than refactoring.

Weber et al. [11] enable designers to extract a process fragment into a sub-process

to remove model redundancies, to foster reuse, and to reduce model size. Although

this approach extracts fragments as sub-graphs, not all the refactoring algorithms

proposed by these authors are based on graphs.

Finally, Hauser et al. [17] propose a process graph model to represent business

process models as graphs and transform these graphs into executable code following

the model-driven engineering principles. Unfortunately, the process graph model has

not been used with refactoring purposes.

3 IBUPROFEN

IBUPROFEN (Improvement and BUsiness Process Refactoring OF Embedded

Noise) addresses business process model refactoring. This technique has been espe-

cially designed for business process models represented according to the BPMN and

mined by reverse engineering. IBUPROFEN allows applying different graph-based

refactoring algorithms in order to address some of the challenges that involve this

kind of business process models. For example, incompleteness is an important chal-

lenge to cope with since data can be distributed in several sources. Moreover, differ-

ent types of granularity are a challenge to address because fine-grained granularity

causes the quality degree is lower. Non-relevant information also causes a low degree

quality since the model should not contain additional elements that do not perform

any business logic in the organization.

With the aim to carry out the refactoring, business process models according

BPMN are managed as graphs. Once business process models are represented as

18

graphs, a set of ten refactoring algorithms are performed. These ten refactoring algo-

rithms supported by IBUPROFEN are divided into three categories regarding their

purpose: maximization of relevant elements, fine-grained granularity reduction and

completeness. For example, Fig. 1 shows one belonging to the first category, remov-

ing unnecessary elements. In that case, the gateway (that represents a decision node in

BPMN) is removed since there are not nodes to choose, only one node (Task 2) can

be executed after Task 1. Fig. 2 shows one belonging to the last category, completing

the model. In that case, decision nodes (represented by gateways in BPMN) are added

in incoming and outgoing branches. The diamond shape with the cross (exclusive

gateway) represents that only one of the branches can be taken. The rest of refactoring

algorithms can be consulted in [18].

Fig. 1. Removing unnecessary nesting

Fig. 2. Adding decision nodes between incoming and outgoing branches

IBUPROFEN is supported by a tool developed as an EclipseTM plug-in (available

in [19]). The supporting tool can therefore be used in combination with other

Eclipse™ plug-ins aimed at obtaining business process models, e.g., from the source

code of existing information systems. IBUPROFEN uses JGraphT [20] to manipulate

graphs easily. JGraphT is a free Java graph library that provides mathematical graph-

theory objects and algorithms. JGraphT supports various types of graphs such as, for

example, directed graphs that are used in IBUPROFEN. Additionally, the BPMN file

is read through the Jdom [21], library responsible for handling XML files via Java

code.

The next sub-sections explain in detail the transformation between business pro-

cess models according BPMN and graphs, as well as the implementation of each cat-

egory of refactoring algorithms and the transformation from graphs to BPMN.

3.1 Transformation BPMN to Graphs

Each business process model is transformed into a directed weighted graph (De-

faultDirectedWeightedGraph<V,E>), a non-simple directed graph in which

19

multiple edges between any two vertices are not permitted, but loops are. In our case,

vertices (V) are modeled using the BPElement class while edges (E) are modeled

using the BPEdge class. Both classes implement the Cloneable interface. BPEle-

ment saves the information about a BPMN element such as a task, data object, gate-

ways and events. BPEdge, in turn, saves the information about an edge in the business

process model such as a sequence flow and an association flow. The information that

is saved by these classes is the name, the type, an identifier, among other. In case of

events and gateways, nodes save the subtype of this type of node, i.e., start, interme-

diate and end for events and exclusive, parallel, inclusive and complex for gateways.

Compounded tasks are, in turn, directed weighted graphs.

The set of business process models mined from existing information systems is

transformed therefore to a list of graphs. Each graph represents one business process

model and has several BPElement instances connected by means of several BPEdge
instances. Thus, a business process model is represented as a graph through the nota-

tion G= (V, E), being v1, v2ϵ V (nodes) and e ϵ E (edge), the edge between these

nodes e = (v1, v2). For example, the connection between a task t1 and task t2 (se-

quence flow) is represented as follow: e = (v1, v2), e.type=SEQUENCE, e.name=

“t1�t2”, v1.type=TASK, v1.name=t1, v2.type=TASK, v2.name=t2.

3.2 Graph-based refactoring algorithms

IBUPROFEN provides a set of ten refactoring algorithms grouped into three cate-

gories: maximization of relevant elements, fine-grained granularity reduction and

completeness [18]. The next paragraphs explain in detail the implementation of each

refactoring algorithms belonging to each of the categories.

• Maximization of relevant elements.

This category groups the refactoring algorithms responsible for removing non-

relevant elements found in business process models; these include isolated tasks,

sheet tasks and inconsistencies. Moreover, nested gateways can bring about an in-

crease in the complexity of business process models, so these are replaced by equiva-

lent, light-weight structures. The refactoring algorithms are the following:

R1. Remove Isolated Nodes: This refactoring algorithm removes nodes (i.e.,

tasks, gateways or events) in the business process model that are not connected with

any other node in that model, i.e., nodes without incoming and outgoing edges. Algo-

rithm 1 illustrates this refactoring.

Algorithm 1: Remove Isolated Nodes.

Given G = (V, E)

∀ a ϵ V

 if ¬∃ e ϵ E : (e = (b, a) ˅ e = (a, b), b ϵ V) then

 V – {a}

20

R2. Remove Sheet Nodes: This refactoring algorithm removes elements in the

business process model that are considered sheet nodes. These nodes can be gateways

or intermediate events that have no successor nodes, i.e., nodes without outgoing

edges in the graph. Algorithm 2 illustrates this refactoring.

Algorithm 2: Remove Sheet Nodes.

Given G = (V, E)

∀ a ϵ V : a.type = INTERMEDIATE ˅ a.type = GATEWAY

 if ¬∃ e ϵ E : e = (a, b), b ϵ V then

 V – {a}

R3. Merge nesting: This refactoring algorithm merges consecutive gateways of

the same type (i.e., all gateways are exclusive or all are inclusive or parallel and so

on). The merging is performed when the first gateway has only one output and the

second has only one input. Algorithm 3 illustrates this refactoring algorithm.

Algorithm 3: Merge Nesting.

Given G = (V, E)

gatewaysToMerge  Ø

∀ a ϵ V : a.type = GATEWAY

 ∀ b ϵ V : ∃! e1 ϵ E : e1 = (a, b)

 if b.type = GATEWAY ˄ ∃! e2 ϵ E : v2 = (b, a) ˄ a.subType = b.subType then

 gatewaysToMerge  {(a,b)}

∀ (g1,g2) ϵ gatewaysToMerge

 ∀ e ϵ E : e = (g2, a)

 E  {e’ = (g1,a)}, E – {e}, V – {g2}

R4. Remove Inconsistencies: This refactoring algorithm removes sequence flows

in the business process model that are considered inconsistent. When two tasks are

connected through a cut node, such as an intermediate event or a gateway, and

through a direct sequence flow, this sequence flow is removed while the most restric-

tive path is maintained. Algorithm 4 illustrates this refactoring.

Algorithm 4: Remove Inconsistent Paths.

Given G = (V, E)

∀ a ϵ V : a.type = GATEWAY ˅ a.type = INTERMEDIATE

 ∀ es ϵ E : es = (a, as), as ϵ V

 ∀ ep ϵ E : ep = (ap, a), ap ϵ V

 if ∃ e ϵ E : e = (ap, as) then

 E – {es}, E – {ep}, V – {a}

21

R5. Remove unnecessary nesting: This refactoring algorithm was shown in Fig.

1. It removes gateways that connect only two nodes, i.e. with one input and one out-

put. This gateway is removed and a direct sequence flow is created between these

nodes. Algorithm 5 illustrates this refactoring.

Algorithm 5: Remove unnecessary nesting.

Given G = (V, E)

∀ a ϵ V : a.type = GATEWAY

 if ∃!es ϵ E : es = (a, as) ˄ ∃!ep ϵ E : ep = (ap, a), as,ap ϵ V then

 E – {es}, E – {ep}, V – {a}, E  {e’ = (ap, as)}

• Fine-grained granularity reduction

The different granularity of business tasks and callable units in existing infor-

mation systems constitutes another important challenge [22]. According to the ap-

proach proposed by [23], each callable unit in an information systems is seen as a

candidate business task. However, existing systems typically contain thousands of

callable units, some of which are large ones supporting the main business functionali-

ties of the system, while many are very small and do not support any business activity

directly. In other situations, a set of small callable units together support a business

activity. This means that this category provides two refactoring algorithms to deal

with large sets of fine-grained business tasks and data objects:

R6. Create compound tasks: This refactoring algorithm transforms each task into

a compound task when this task has several subsequent tasks, which are in turn con-

nected by a round-trip sequence flow to the task. This scenario comes about because

each callable unit is transformed into a task during the reverse engineering stage when

a given callable unit can invoke another callable unit, returning a value to the first

one. In this case, a compound task is created with a start and end event connected

with each subsequent task through the respective split and join exclusive gateways.

Algorithm 6 illustrates this refactoring algorithm.

Algorithm 6: Create compound tasks.

Given G = (V, E)

∀ a ϵ V : a.type = TASK

 children  Ø

 ∀ b ϵ V : b.type = TASK

 if ∃ e1 ϵ E : e1 = (a, b) ˄ ∃! e2 ϵ E : e2 = (b, a) then

 children  b

 V – {b}, E – { e1}, E – { e2},

 G’ = (V’, E’)

V’  {a1,a2,a3,a4}, a1.type = START, a2.type = END, a3.type = COMPLEX, a4.type =

COMPLEX

22

E’  {m1,m2,m3,m4}, m1.type = SEQUENCE, m2.type = SEQUENCE, m3.type =

SEQUENCE, m4.type = SEQUENCE, m1 = (a1,a3), m2 = (a4, a2)

 ∀ c ϵ children

E’ {m’,m’’}, m’.type = SEQUENCE, m’ = (a3,c), m’’.type = SEQUENCE, m’’ = (c,

a4)

 a.type = COMPOUND, a.subGraph = G’

R7. Combine data objects: This refactoring algorithm combines data objects that

are input and/or output of a task. The combination is possible when those data objects

are used exclusively (written or read) for that task. The combination is done when the

number of data objects is above a threshold. To mitigate the collateral semantic loss,

all the names of the grouped data objects are saved in the documentation attribute

provided by the BPMN standard. Algorithm 7 illustrates this refactoring algorithm.

Algorithm 7: Combine data objects.

Given G = (V, E)

∀ a ϵ V : a.type = TASK

 dataWrite  Ø , dataRead  Ø

 ∀ e ϵ E : e = (a, b), b ϵ V, b.type = DATA

 if ∃! e ϵ E: e = (c, b) ˄ c=a then

 dataWrite  {b}

 V – {b}, E – {e}

 ∀ e ϵ E : e = (b, a), b ϵ V, b.type = DATA

 if ∃! e ϵ E: e = (b, c) ˄ c=a then

 dataRead  {b}

 V – {b}, E – {e}

 V {dw}, dw.type = DATA

 ∀ d1 ϵ dataWrite

 dw.additionalInfo  d1.name

 E  {ew}, ew.type = SEQUENCE, ew = (a, dw)

 V {dr}, dr.type = DATA

 ∀ d2 ϵ dataRead

 dr.additionalInfo {d2.name}

 E  {er = (dr, a)}, er.type = SEQUENCE

• Completeness

Any reverse engineering technique implies an increase in the degree of abstraction,

and therefore there is a semantic loss. This category is provided for that reason, to

deal with semantic loss by means of the incorporation of additional elements that are

not been retrieved in the reverse engineering phase. The refactoring algorithms are the

following:

23

R8. Join Start and End events: This refactoring algorithm joins the start and end

event to the starting and ending tasks, respectively. These events are created whether

or not they were created before. When there are several starting tasks, the algorithm

adds a split complex gateway between the start event and starting tasks. Similarly, if

there are several ending tasks, it adds a joining complex gateway between ending

tasks and the end event [24]. Algorithm 8 illustrates this refactoring.

Algorithm 8: Join start and end events.

Given G = (V, E)

∀ a ϵ V : a.type = TASK

 start  Ø , end  Ø

 if !∃e ϵ E: e = (b, a), b ϵ V then

 start {a}

 if !∃e ϵ E: e = (a, c), c ϵ V then

 end {a}

 V  {v1,v2,v3,v4}, v1.type = START, v2.type = END, v3 = COMPLEX, v4 = COMPLEX

 E {e1,e2}, e1 = (v1, v3), e2 = (v4,v2)

 ∀ v ϵ start

 E {e’ = (v3, v)}

 ∀ v ϵ end

 E {e’ = (v, v4)}

R9. Add gateways in incoming and outgoing branches: It is possible to obtain

business process models by revere engineering that do not follow some of the good

modeling practices that would be in accord with the BPMN standard as regards the

usage of gateways [24]. In this case, this algorithm adds a split and join exclusive

gateway when a certain task has several precursor or subsequent tasks, respectively

(see Fig. 2). Algorithm 9 illustrates this refactoring.

Algorithm 9: Add gateways in branches.

Given G = (V, E)

∀ a ϵ V : a.type = TASK ˅ a.type = EVENT

 successor  Ø, predecessor  Ø

 ∀ b ϵ V :∃e ϵ E: e = (a, b)

 if b.type = TASK ˅ b.type = EVENT ˅ b.type = GATEWAY

 successor  {b}

 E – {e}

 ∀ b ϵ V :∃e ϵ E: e = (b, a)

 if b.type = TASK ∨ b.type = EVENT ˅ b.type = GATEWAY

 predecessor {b}

 E – {e}

24

 if |successor|>1 then

 V  {v1}, v1.type = EXCLUSIVE

 ∀ s ϵ successor

 E {e1,e2}, e1 = (a, v1), e2 = (v1,s)

 if |predecessor|>1 then

 V  {v2}, v2.type = EXCLUSIVE

 ∀ p ϵ predecessor

 E {e1,e2}, e1 = (p, v1), e2 = (v1,a)

R10. Refine names: This refactoring algorithm implements a heuristic to improve

labels of business tasks that were obtained almost directly from methods or functions

of legacy source code through reverse engineering. These labels usually follow nam-

ing conventions present in most programming approaches such as the concatenation

of various capitalized words. This refactoring algorithm split these labels into ones

containing various words. This algorithm is not necessary to be shown due to the easy

implementation using graphs.

3.3 Graph to BPMN

After applying refactoring algorithms, each graph is transformed into a business

process model and each graph element is transformed into a BPMN element. Thus,

each BPElement is transformed into a task, data object, gateway or event according

to its type while each BPEdge is transformed into a sequence flow or association

flow according to its type.

4 CASE STUDY

This section provides a case study with a real-life information system. The object of

this case study is IBUPROFEN and the purpose of this case study is to evaluate how

each refactoring algorithm affects to the understandability and modifiability of the

business process model.

Despite the understandability depends on the people in charge of use, management

or evaluation such business process models, i.e., it is subjective, understandability can

be assess through several quality measures such as the number of nodes in the busi-

ness process models, the number of nesting branches, the connectivity between ele-

ments, the density of elements, among others. For this reason, this paper considers as

dependent variables the size, density and separability of a business process model in

order to assess understandability and modifiability of a business process model.

• Size is the number of nodes in a business process model. This measure affects

negatively to the understandability, i.e. a higher size difficult the understandability

of a certain business process model [24].

25

• Density is the ratio between the total number of edges in a business process model

and the theoretical maximum number of possible edges regarding the number of

nodes. It affects the understandability and modifiability negatively, i.e., lower den-

sity values lead to business process models with a lower level of intricacy.

• Separability represents the ratio between the number of cut-vertices in a business

process model (i.e. nodes that serve as bridges between otherwise strongly-

connected components) and the total number of nodes. Separability affects the

modifiability negatively, since higher separability implies hard and error-prone

modifications of business process models.

The case under study is XCare information system. XCare is a mobile application

of 9.9 thousands of lines of code. This application is intended for diabetes patients,

which analyzes blood (through an external device) and suggests diet plans. Hence, the

independent variables of this case study are each business process model obtained

from XCare through reverse engineering.

The case study procedure consists of a set of semiautomatic steps that are executed

in a computer with a 2.66 GHz dual processor and 4.0 GB RAM. The steps are as

follows:

1. First of all, the extraction of business process model from XCare is performed by

using MARBLE [25]. MARBLE is a tool used to recover business process models

from existing Java code. This tool was selected because is released as an Eclipse

plug-in and it therefore can be easily integrated with the IBUPROFEN tool.

2. Fig. 3 gives an example of a business process model obtained by MARBLE from

XCare. This business process model contains 255 nodes and 512 edges, being the

largest mined from XCare. The smallest model obtained has around 7 nodes and 6

edges. The sample can be visualized entirely and perfectly online [26]. Thus, a

sample of 25 business process models is obtained from the source code from

XCare.

3. The whole set of IBUPROFEN refactoring algorithms, that was mentioned in Sec-

tion 3.2, are applied in each business process model retrieved in the above step.

Refactoring algorithms are applied in isolation.

4. The dependent variables (size, density and separability) are recorded before and af-

ter applying each refactoring algorithm in order to be analyzed later.

Table 1 collects the value of the size, density and separability mean after applying

each refactoring algorithm, as well as the gain obtained with respect to the original

value. The gain is defined as the ratio between the difference of measure values and

the original measure value. Thus, a positive gain means that the refactoring affects the

measure positively while a negative gain means that the refactoring affects the meas-

ure negatively. A zero gain means that the value for a certain measure did not change

after refactoring.

26

Fig. 3. Example of business process model managed by IBUPROFEN

Table 1. Effect of each refactoring algorithms on the size, density and separability

Size Density Separability

Mean Gain Mean Gain Mean Gain

Original 70.760 0.000 0.086 0.000 47.88 0.000

R1 46.440 0.366 0.150 -5.903 23.56 0.450

R2 67.120 0.030 0.087 -0.061 44.24 0.040

R3 70.760 0.000 0.086 0.000 47.88 0.000

R4 70.760 0.000 0.086 0.007 47.88 0.000

R5 70.440 0.003 0.086 -0.002 47.88 0.000

R6 62.560 0.114 0.067 0.093 48.76 -0.015

R7 63.040 0.098 0.093 -0.068 41.96 0.120

R8 74.360 -0.201 0.114 -0.511 51.48 -0.249

R9 90.160 -0.229 0.064 0.111 48.08 -0.002

R10 70.760 0.000 0.086 0.000 47.88 0.000

27

Table 1 reveals that removing isolated nodes decreases the size and separability

while the density is increased. Despite the density is higher after R1, the relevance of

the model has been increased since non-relevant elements have been removed. Simi-

larly, R2 causes an increase of density when the size is decreased. Separability is

decreased slightly. However, R3 has not impact on these measures due to business

process models under study do not have nesting gateways. Removing inconsistencies

(R4) maintains the same size and separability while the density is decreased because

the number of edges is lower. Unnecessary gateways are removed (R5) and therefore

the size is decreased while the density is increased owing to the number of nodes is

lower. Separability after R5 is exacerbated slightly. R6 creates compound tasks in

several business process models. This fact makes the size and density decrease in the

most of cases. The same happens with R7, the number of nodes is lower but the num-

ber of edges is lower to and therefore, the density may increase while separability

increases. R8 adds new missing elements in the model as start and end event as well

as complex gateways. This makes that the size, separability and density are higher. In

the same way, adding gateways in incoming and outgoing branches causes higher

size. Nevertheless, the density after R9 tends to decrease due to there is more nodes in

the model. Separability increases slightly since elements are more connected. In con-

trast, R10 does not have affect in any measures but the refinement of names implies

an enhancement of the understandability.

5 CONCLUSIONS AND FUTURE WORK

Refactoring techniques has proved to be a good choice for improving business pro-

cess models in terms, for example, of their understandability and modifiability levels.

While graph-based algorithms have been successfully employed in different contexts,

most business process model refactoring techniques often use alternative data struc-

tures [10-12] which leads to inefficient results. For this reason, this paper presents

IBUPROFEN as a technique for refactoring business process models following a

graph-based approach. Thus, the business process model is managed by means of a

graph, changing its internal structure while its semantic is preserved. IBUPROFEN

proposes ten refactoring algorithm divided into three groups in order to address the

common problems that organizations have to deal when they retrieved such business

process models by reverse engineering.

In order to demonstrate the feasibility of this approach, IBUPROFEN has been

firstly implemented as an open source tool, and secondly, a case study with industrial

business process models has been conducted. The case study reveals that the applica-

tion the proposed graph-based refactoring algorithms improve the size, separability

and density of business process models in the most of cases by removing non-relevant

and fine-grained elements as well as by completing the models. The main limitation

of this study is that results show size and density have an inverse relationship, i.e.,

when one increase the other decrease.

The second limitation lies in the empirical study analyzes the application of each

refactoring algorithm in isolation. However, studies reveals that the order of applica-

28

tion of various refactoring algorithms in sequence could have an effect on the ob-

tained results [18].

In line with the mentioned limitations, the future work will focus on the replication

of the case study by analyzing alternative measures as well as the effect of different

application orders. Furthermore, an algorithm improvement endeavor will be made to

conciliate the size and density gain at the same time.

Acknowledgments

This work was supported by the FPU Spanish Program and the R&D projects MAGO

/PEGASO (Ministerio de Ciencia e Innovación [TIN2009-13718-C02-01]) and

GEODAS-BC (Ministerio de Economía y Competitividad & Fondos FEDER

[TIN2012-37493-C03-01]).

6 REFERENCES

1. Weske, M., Business Process Management: Concepts, Languages, Architectures2007,

Leipzig, Germany: Springer-Verlag Berlin Heidelberg. 368.

2. OMG. Business Process Modeling Notation Specification 2.0. 2011; Available from:

http://www.omg.org/spec/BPMN/2.0/PDF/.

3. Jeston, J., J. Nelis, and T. Davenport, Business Process Management: Practical Guidelines

to Successful Implementations. 2nd ed2008, NV, USA: Butterworth-Heinemann (Elsevier

Ltd.). 469.

4. Davenport, T.H., Need radical innovation and continuous improvement? Integrate process

reengineering and TQM. Strategy & Leadership Journal, 1993. 21(3): p. 6-12.

5. Heuvel, W.-J.v.d., Aligning Modern Business Processes and Legacy Systems: A

Component-Based Perspective (Cooperative Information Systems)2006: The MIT Press.

6. van der Aalst, W., Process Mining: Overview and Opportunities. ACM Transactions on

Management Information Systems (TMIS), 2012. 3(2): p. 7.

7. Pérez-Castillo, R., I. García-Rodríguez de Guzmán, and M. Piattini, Business Process

Archeology using MARBLE. Information and Software Technology, 2011.

8. Fahland, D. and W.M.P.v.d. Aalst, Repairing Process Models to Reflect Reality. 2012.

9. Fernández-Ropero, M., R. Pérez-Castillo, and M. Piattini, Refactoring Business Process

Models: A Systematic Review, in 7th International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE), J. Filipe and L. Maciaszek, Editors. 2012,

SciTePress: Wrocław, Poland. p. 140-145.

10. Dijkman, R., et al., Identifying refactoring opportunities in process model repositories. Inf.

Softw. Technol., 2011. 53(9): p. 937-948.

11. Weber, B., et al., Refactoring large process model repositories. Computers in Industry,

2011. 62(5): p. 467-486.

12. La Rosa, M., et al., Managing process model complexity via abstract syntax modifications.

Industrial Informatics, IEEE Transactions on, 2011. 7(4): p. 614-629.

13. Pham, M.-D., P. Boncz, and O. Erling, S3G2: A Scalable Structure-Correlated Social

Graph Generator, in Selected Topics in Performance Evaluation and Benchmarking, R.

Nambiar and M. Poess, Editors. 2013, Springer Berlin Heidelberg. p. 156-172.

29

14. Gubichev, A. and T. Neumann, Fast approximation of steiner trees in large graphs, in

Proceedings of the 21st ACM international conference on Information and knowledge

management2012, ACM: Maui, Hawaii, USA. p. 1497-1501.

15. Mens, T., G. Taentzer, and O. Runge, Analysing refactoring dependencies using graph

transformation. Software & Systems Modeling, 2007. 6(3): p. 269-285.

16. Bobrik, R., M. Reichert, and T. Bauer, View-Based Process Visualization, in Business

Process Management, G. Alonso, P. Dadam, and M. Rosemann, Editors. 2007, Springer

Berlin Heidelberg. p. 88-95.

17. Hauser, R. and J. Koehler, Compiling Process Graphs into Executable Code, in Generative

Programming and Component Engineering, G. Karsai and E. Visser, Editors. 2004,

Springer Berlin Heidelberg. p. 317-336.

18. Fernández-Ropero, M., et al., Assessing the Best-Order for Business Process Model

Refactoring, in 28th Symposium On Applied Computing (SAC)2013: Coimbra, Portugal. p.

1400-1406.

19. Fernández-Ropero, M., R. Pérez-Castillo, and M. Piattini. IBUPROFEN. 2012; Available

from: http://marketplace.eclipse.org/content/IBUPROFEN.

20. Naveh, B. and Contributors. JGraphT. 2011; Available from: http://jgrapht.org/.

21. Hunter, J., JDOM, 2009.

22. Pérez-Castillo, R., et al., Generating Event Logs from Non-Process-Aware Systems

Enabling Business Process Mining. Enterprise Information System Journal, 2011. 5(3): p.

301–335.

23. Zou, Y. and M. Hung, An Approach for Extracting Workflows from E-Commerce

Applications, in Proceedings of the Fourteenth International Conference on Program

Comprehension2006, IEEE Computer Society. p. 127-136.

24. Mendling, J., H.A. Reijers, and W.M.P. van der Aalst, Seven process modeling guidelines

(7PMG). Information and Software Technology, 2010. 52(2): p. 127-136.

25. Pérez-Castillo, R., et al., MARBLE. A Business Process Archeology Tool, in 27th IEEE

International Conference on Software Maintenance (ICSM'11)2011, IEEE Computer

Society: Williamsburg, Virginia, USA. p. 578-581.

26. Fernández-Ropero, M., R. Pérez-Castillo, and M. Piattini. Extra material of Graph-Based

Business Process Model Refactoring 2013; Available from: http://alarcos.esi.uclm.es/

per/mfernandez/material3.html.

30

