
 An Approach to Evaluate the Reliability of Web

Applications in Cloud Computing Using Dynamic Fault

Tree
Elinda Kajo Meçe

Department of Computer Engineering
Polytechnic University of Tirana

Tirana, Albania

ekajo@fti.edu.al

 Eneida Driza
Department of Computer Engineering

Polytechnic University of Tirana
Tirana, Albania

eneidadriza@yahoo.com

ABSTRACT

Nowadays, one of the main challenges in developing different

systems is obtaining reliable ones. So, preliminary studies of

problematic atomic components which convert the system from

reliable to unreliable need to be done. This paper is focused in

evaluating one of the nonfunctional characteristics like the

reliability of web applications in cloud environment.

Nonfunctional characteristics such as reliability, security and

availability of a web service application and hence its service

components play an important role in evaluating the system

performance of the web application. The paper proposes a

Dynamic Fault Tree analysis of applications ran on cloud

platform. As a case study in order to demonstrate the feasibility of

this approach is used online payment system in e-commerce

hosted on a cloud platform. The results obtained reveal that this is

a good way in studying the reliability of the systems. Under

specific system conditions with minimal functional resources on

the cloud platform, cloud impact on system unreliability is nearly

twice the impact of application type.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of systems

- modeling techniques, performance attributes, reliability,

availability and serviceability

General Terms

Measurement, Performance, Design, Reliability, Experimentation,

Standardization, Verification

Keywords

Web Application, Cloud Computing, Dynamic Fault Trees (DFT),

Reliability, E-Commerce

1. INTRODUCTION
Deployed applications on cloud environment show a high level of

complexity, since the problems are not only related to the well-

functioning of the application but also to the Cloud platform, that

gives the illusion of infinite computing resources available on

demand [1].

So, we aim to specify and detect the undesired behaviors of such

system in order to evaluate how specific failure events or

combination of failure events relative to the system components

can cause the failure of subsystems or of the whole system [9].

The main goal of the paper consists in evaluating the reliability

level of cloud applications focusing on the fault tree usage.

The system will be modeled using Dynamic Fault Tree technique.

This technique graphically represents logical relationship of

system failures [14]. System analysis will be performed based on

a dynamic model, using constant failure rates of the components

[7], which at certain time intervals make faulty a specific

component. The reliability of the application can be calculated,

once modeling the system and evaluating each component

reliability level using DFT. This analysis aims to detect the most

problematic and the most vital components, and sorting them out

based on their unreliability level on the system.

According to technical definition, the term reliability means:

“The ability of an item (system, subsystem that can be considered

an entity by itself) to perform a required function, under given

environmental and operational conditions and for a stated period

of time (ISO84021)” [7]

System designers pay importance to system reliability. A system is

considered fully-functional if it guarantees fault tolerance and

failure avoidance. Failure avoidance is attained by using high

quality and reliable components, meanwhile fault tolerance is

assured using redundancy, which sometimes causes design

complexities and can be cost-expensive. So, in cases when it’s

needed to be specified how to improve system reliability, either by

using fault tolerance or failure avoidance, the reliability of each

atomic component needs to be evaluated.

Two types of results are available in a fault tree evaluation:

qualitative and quantitative results. Qualitative assessments give a

qualitative ranking of each component in regard to its contribution

1 Standard: ISO8402 Quality Management and Quality Assurance

- Quality Vocabulary

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

150

to system failure [11], while quantitative assessments determine if

reliability requirements of the component are fulfilled or not. It is

suggested to find out which component or module mostly

contributes in system unreliability in order to provide a solution in

improving its reliability. So, reliability is a nonfunctional

characteristic and a term that is focused in the ability of a product

to fulfill a certain function. This product can be a hardware or

software product, a system or a service. The paper looks into

evaluating the level of unreliability, where as a real model will be

used E-Commerce applications deployed on a cloud environment.

The paper is organized as follows. The introduction section

reveals the necessity reasons of this paper theme, the main issues

and what is aimed to be achieved. The second section describes

the Cloud platform chosen, the hosted applications and DFT

technique for system modeling. The third section is focused on

hosting E-Commerce application on cloud while the fourth part

gives details about system modeling using DFT. An evaluation of

reliability, graphical representations and the interpretation of

results are given in the fifth and sixth section, while in the last

part are given the conclusions of the paper.

2. DFT TECHNIQUE IN WEB APP
As a case study, for demonstrating the feasibility of DFT

technique is chosen two E-Commerce applications, Cyclos Open

Source Online Banking and JadaSite E-Commerce Solution. The

Cloud Platform where these applications are deployed is Jelastic

Java Cloud (dogado Host Europe v.1.8.2) [15].

E-Commerce applications provide services on the Software as a

Service (SaaS) layer of the cloud. SaaS is based on licensing

software use on demand, which is already installed and running

on a cloud platform [2]. E-Commerce applications have a high

level of complexity and are prone to failure considering some

criteria such as: high load on the web server, dynamic resource

necessities (CPU, memory, I/O, etc), support for objects that are

dynamically created etc. They also have strict requirements related

to response time, transactions or storage capacity [3].

Assuring reliability in such complex systems requires preliminary

identifications of the components and subsystems with the major

impact on system reliability. A fault tree provides a conceptually

simple modeling framework to represent the system-level

interactions between component reliabilities [4]. Dynamic fault

trees are shown particularly useful for reliability analysis [4]: a

logic evaluation of system components and their escalation until a

final evaluation.

 Figure 1. Success and failure space concepts

2.1 System Analysis Using DFT Technique
Fault trees were developed to facilitate unreliability analysis. They

provide a compact, graphical, intuitive method to analyze system

reliability [8], and evaluating the ways that cause a system failure,

proving also the mechanisms for risk detection. Once FTA was

created, mathematical methods and computational codes have

been developed for fault trees, while the main goal of FTA is fault

tree design. The operation of a system can be considered from two

points of view: the ways that lead a system towards a failure and

the ways that lead it towards success.

It is interesting to note that certain identifiable points on success

space coincide with certain analogous points in failure space (see

Figure 1) and is generally easy to attain occurrence on what

constitutes failure than it is to agree on what constitutes success

[12]. Success is related with the efficiency of a system, the

amount of output, the degree of usefulness and production and

marketing features [12], characteristics that are describable by

continuous variables, not easily modeled in terms of simple

discrete events.

Dynamic fault tree analysis pays importance, identifies and

handles only the elements that can lead the system towards a

failure. It is a deductive analysis focused in a specific undesired

event and provides a method in determining the cause of such

event. The main undesired event is considered as a TOP event in

the system fault tree. It leads the system in a total failure. TOP

event has to be chosen carefully, because it is fundamental in the

success of the analysis. If this event is to general, the analysis can

be unmanageable and if the event is too specific, then the analysis

does not give a general overview of the system [12]. So, it is

necessary to be cured till the proper level.

2.2 Fault Tree Model
The fault tree is a graphical model of parallel and sequential fault

combinations that will result in the occurrence of a predefined

undesired event [10]. So, its usage is based on failures.

Failures are events associated with hardware component failures,

human mistakes or other events, which can lead to the undesired

event. The fault tree depicts the logical interrelationships of these

basic events that lead to the undesired event, which is the TOP

event of the tree [12]. The TOP event (named based on its

position on the tree) corresponds to a whole system failure. So,

the tree is composed of all the components that cause this event.

Fault trees are not a quantitative model, but they are a qualitative

model that can be evaluated quantitatively [12]. They include a set

of entities, known as “gates” that allow or prevent logic flow in

the tree. Gates show the relations between the necessary entities,

which cause another event higher in the tree to happen. This event

is considered to be the gate output, while the other events are gate

inputs. The symbol of the gate specifies the relation type between

the necessary inputs for a certain output.

The symbols that compose the fault tree include: basic events,

external events, undeveloped events, conditional events,

intermediary events (see Figure 2), which describe specific cases

of failures. There are also 2 main types of gates: OR gate, AND

gate and transfer symbols (see Figure 2).

151

Figure 2. Basic designing elements of the fault tree

The fault tree requires prior steps to be performed until a final

outcome. There are 8 main steps that need to be fulfilled in order

to create a successful FTA. The interrelationship of the eight steps

is illustrated in Figure 3 and it includes: [12]

1. Identify the objective for the FTA.

2. Define the top event of the FT.

3. Define the scope of the FTA.

4. Define the resolution of the FTA.

5. Define ground rules for the FTA.

6. Construct the FT.

7. Evaluate the FT.

8. Interpret and present the results.

Figure 3. The main steps of the fault tree analysis

The idea of the fault tree is to hypothesize possible failure flaws,

and then check whether these hypotheses are true. Figure 4

illustrates an example of a fault tree [6].

Figure 4. Example of a fault tree

2.3 Evaluation Techniques of Fault Trees
Once the fault tree is constructed it can be evaluated to obtain

qualitative and/or quantitative results [11]. The qualitative

assessments include: a) minimal cut sets in a fault tree, b)

qualitative essentials of the components and c) most common

minimal cut sets that can cause failures.

Cut sets give all the possible unique combinations of components

failures [11] that affect the whole system failure. Common mode

failures identify those cut sets which cause the failure of a set of

components from a single failure.

The evaluation of the quantitative assessments include: a)

absolute probabilities, b) quantitative essentials of the

components and minimal cut sets and c) evaluation of relative

probabilities.

Regarding the qualitative assessments, the minimal cut sets are

taken from the Boolean reduction of the fault tree [11]. They are

also used in all the quantitative assessments. The minimal cut sets

Mj are a combination of primary failures, which are the smallest

combination of failures that cause a system failure.

The information of cut sets can be used directly for controlling the

design criteria. The minimal cut sets may not individually fail the

whole system. Quantitative evaluations measure the importance of

each cut set. If the failure rates of the components are considered

as random variables, then random variable distribution techniques

can be used to estimate the variability in system results, which

result from the failure rate variations [11]. In our case, failure

probability model that will be applied is constant failure rate per

hour. When we use the constant failure rate per hour model, we

assume that failure probabilities are directly related to component

(basic primary event) exposure time. The longer the exposure time

period the higher the probability of failure [11].

According to the technical definition, component reliability R(t),

is the probability of not having any failure during the time interval

t and is evaluated with the below formula: [11]

 

Component unreliability F(t) thus is the probability of having at

least a failure, during a time interval t. This means that there is

also the possibility of having more than one failure, if the

component failure is recoverable.

System unavailability Qs(t) is determined as the probability that

the system is unable to operate during a time interval t and does

not respond on calling it. If Qi is the unavailability of a cut set,

then the unavailability of the whole system Qs(t) can be

approximated as the sum of the minimal cut sets unavailability

Qi(t).

For systems that operate online, the system failure occurrence rate

[11] on the system is signed as Ws(t), while Ws(t)Δt is the

probability that system fails at a certain time. If the failure rate of

the minimal cut sets is Wi(t), then the system failure rate Ws(t) is:

152

The system unavailability Qs(t) and the system failure occurrence

rate Ws(t) give comprehensive information on the probabilistic

description of system failure [11].

3. APPLICATIONS DEPLOYMENT
Testing of system reliability is achieved by deploying E-

Commerce applications in cloud environment. The Cloud

platform used is Jelastic Java Cloud. It supports every application

JVM-based, including Java, JRuby, Groovy and

ColdFusion/CFML [15].

E-Commerce applications that will be deployed are: Cyclos-Open

Source Online Banking and Jadasite-E-Commerce Solution. The

source code of both applications can be downloaded for free on

the Internet. Jelastic cloud supports application deployment in

.war archived form. These types of files are zipped files (Web

Archive), which can be used for hosting Servlets including EE

(Enterprise Edition) and JSP (Java Server Page). The .war files

are similar with .jar files used by Servlets. They can include

different types of files such as: *.java, *.jsp, *.xml, *.css, *.ejb,

*.gif, *.html, *.png, *.sql, *.xsl, *.xtp [16].

For the deployment process of each application, the environment

will use Tomcat Server 6 and MySQL 5.5. The environments

give the opportunity to use the below capacities for free: 3

environments for each account, 4 application servers per

environment , 16 cloudlets for the application servers and also

1GB storage dedicated to them [15]. However the deployment

process includes a large number of problems, cloud platform gives

the opportunity of managing and solving them.

4. SYSTEM MODELING
After the deployment process on cloud environment, we ran both

the applications as an administrator and also as a simple user. We

interfere in the application codes, in order to detect some possible

failures. Cloud provides also some data regarding application

usage, which will be used in constructing the fault tree.

Failure reasons of E-Commerce applications on cloud are

numerous, starting with the simplest issues related to human

mistakes, up to the most complex problems that may require

external interventions (e.g., an overall blockage of the hosting

platform).

Fault Tree + Analysis Tool will be used for constructing the

system fault tree. This is a framework for system modeling based

on system points of failure. Quantitative assessments of these

failures can also be evaluated using Fault Tree +. This approach is

based on reasoning from individual failures to an overall

conclusion.

Reliability Workbench v.11 incorporating Fault Tree + is

executed under Microsoft .NET Framework [14]. This is a single

powerful integrated environment for reliability and safety

analysis. The fault tree is constructed based on the failures that

affect the general functionality of the deployed applications on

cloud environment.

4.1 Failures Detection
The identification of system failures is necessary, prior

constructing the fault tree. First of all, the environment taken as a

reference point may be a bit disappointing, because we used the

cloud platform with its minimal available resources. Normally, it

is expected to have high rates of failures but we decided to

perform worst-case analysis in order to identify most of cloud

failures and to evaluate their impact. The platform is fault tolerant

from failures related to servers or database because it provides

new elements and it also stores logs operation history on the

platform. Continuous monitoring of its capacities (CPU, RAM,

HDD, Network), can also be provided. These values are used

when applying failure models to the components.

Second, we interfered in the application codes. We performed

some changes at administrator level in order to generate several

errors, for example: deleting all the data by mistake, resetting the

system by mistake, putting incorrect numeric values and in the

wrong format etc. We also used the application at user level, for

example: performing incorrect navigations, using the wrong type

of browser, completing the wrong fields with the wrong

information etc. Some other failures are also taken from similar

studies of these systems.

We have determined the main functional elements of our system,

which can probably be points of failures. These elements included

cloud elements (e.g., servers, databases etc.) or application

elements (e.g., human mistakes, third party software etc.).

These failures include: database server failures, web server

failures, hardware failures, third-party software failures, browser

failures, network failures, hosting problems, memory leakage,

human mistakes and bad planning capacity problems etc [13].

Each of these main failures is caused by other failures. For

example, the browser is the most vulnerable piece of software of

the entire e-commerce system. It acts as a window for information

transaction and management for the whole system. So, if the

browser crashes and its window closed, it also closes all the

possibilities for a successful e-commerce transaction. In this case,

a user will think twice prior using the site again. The evaluated

browser failures in our case include factors such as: blockage

(browser blockage due to its components failures) and closure

(browser closure by mistake). Blockage can be caused due to

incompatibility problems (content - browser incompatibility or

browser - plug-in incompatibility), and issues due to memory

leaks.

We inspect all the main failure components of the system, for

finding out the failure reasons for each of them, the same way.

After failures are detected, the fault tree can be constructed.

4.2 Fault Tree Construction
A well constructed fault tree requires some forethought. Things

done in early phase of the fault tree construction can impact later

phases of the analysis [5]. It is difficult to make construction

changes at a later development stage if the fault tree is very large.

Fault Tree + tool, is a deductive analysis tool that provides a way

to logically combine all the failures that can lead to the occurrence

of the undesired event (TOP event). The process of system

modeling starts with the TOP event. A TOP event is fundamental

in the success of the analysis, so it has to be chosen carefully. In

our case, the fault tree construction starts with the TOP event

called Unreliable Application and scales down in creating a

hierarchical structure (see Figure 5). The two main failure areas

are related to the applications and cloud platform. In the fault tree,

they are labeled as: Application and Cloud (see Figure 5). The

construction of a complete fault tree (including main failures,

sublevels or initial events) will present all the evaluated failures.

153

There are evaluated 12 main failure components. These failures

are related to the usage of the deployed applications, also to the

cloud environment. After evaluations, there are assessed 35 basic

initial events of failure for the application and 64 for the cloud, in

a total of 99 basic initial events. So, continuing the example of the

browser (as explained in Section 4.1), browser failure is a main

failure component classified under Application sub-tree. Failures

of the first sublevel are browser blockage and browser closure

(see Figure 6).

Figure 5. Initial modeling of the system fault tree (TOP event

and 2 main failure components)

Figure 6. Example of how the fault tree is constructed

(browser failure)

Browser closure is also considered as a basic initial event because

it does not include any other reasons of failures, except its closure

by mistake. The blockage of the browser is related either to the

incompatibility problems with the application content and the

plug-ins or problems with memory leakage. So, incompatibility

and memory leakage are considered as basic initial events.

We depict the basic initial events even for the other components,

the same way.

The entire fault tree is entitled “Unreliability”, since it is the

nonfunctional characteristic to be evaluated. It is composed of a

total of 23 sub-trees. Two general structures of application and

cloud sub-trees are illustrated in Figure 7 and Figure 8. These

sub-trees give the idea how the failures are spread across the fault

tree.

Figure 7. General structure of application fault tree

Figure 8. General structure of cloud fault tree

4.3 Failure Models
Failure models provide a quantitative assessment of failures

related to a specific component or related to the primary event on

the fault tree [11]. They can be local failure models or global

failure models. The difference between them stands on the fact

that local failure models can be assigned to only one component,

while global failure models can be assigned to a set of

components.

It is necessary to determine a failure model, for each of the initial

basic events. The failure model requires assuming some failure

characteristics for the components. These characteristics include

MTTF (Mean time to failure) and MTTR (Mean time to repair).

So, for each initial failure, we specify a possible failure time and a

possible repair time. This model also assumes a constant failure

rate and an exponential distribution of these failures.

The failure models are added to each of the 99 initial basic events.

These models are unique because it is supposed that the failure

time varies for each of the components. System evaluation begins

the same time of system operation and is done during 1 and 24

hours.

The evaluation of the modeled system begins with the evaluation

of the initial basic events. The reliability evaluation for higher

154

events positioned on the fault tree, up to the TOP event is done

based on the logic functions of the gates.

After a complete system analysis, Fault Tree + provides the

possibility of taking graphical results. The graphical results

include: system unreliability values depending on time,

problematic system components depending on their critical level

to the system, failure frequencies of the components and their

unavailability depending on time.

5. RELIABILITY EVALUATION AND

GRAPHICAL REPRESENTATIONS
Reliability evaluation is performed, once the system is modeled

using Fault Tree + Analysis Tool. This tool requires some failure

specifications in regard to the failure components such as: MTTF

and MTTR values. The existence of such specifications is

necessary for the real evaluation of system unreliability.

Advance detections and evaluations of the unreliability of each

failure component, helps finding out that certain items are major

contributors to system unreliability compared with others, so they

should be the ones to be addressed.

The graphical representations are also based on MTTF and MTTR

values. Mathematic models use these values for calculating

components unreliability, failure frequency and failure/repair

rates. RWB performs data calculation based on the below

formulas:

Q(t) - component unavailability
 ω(t) - failure frequency of the component
 λ - failure rate of the component

 μ - repair rate of the component

For each main failure (as explained in Section 4.1), which causes

a certain substantial impact on system reliability are taken some

graphical results (see Figure 9). Regardless the complexity of

modeling the system, RWB provides graphical illustrations of the

calculated unreliability indices for the main failure components.

The unreliability values for each main component such as:

application server, cache server, database server, network,

hardware, capacity, hosting problems, web server, human

mistakes or the browser are calculated on developing them further

by finding the initial basic events unreliability values which may

contribute to them. The graphical representations do not include

the hardware component, since it is dependable from the capacity

component. The hardware component includes issues related to

CPU/RAM, source conflicts or server hardware that somehow can

be evaluated as part of capacity component.

Thus, as illustrated in Figure 9, the affect of cloud components on

system unreliability is higher than the application components.

This relates to the fact that, while application issues are somehow

reparable and not quite problematic to the whole system, cloud

issues are more numerous and can lead to a total system failure

that require some time to be repaired. The number of initial basic

events (35 for the application and 64 for the cloud environment)

also indicates the higher impact of cloud on system unreliability.

Fig 9. Graphical representations of system unreliability based

on main failure components depending on time (1 hour and 24

hours)

Calculated through RWB, the below graphical representation (see

Table 1 and Figure 10) gives the percentages of components

unreliability.

Table 1. Unreliability results of the main failure components

Figure 10. Graphical representation of unreliability values of

the system in % depending on the main components

155

The evaluation with RWB also provides component classification

depending on their severity. The severities are in the range from 1

to 4, so each component based on the RWB results is classified

under a certain severity level (see Figure 11). Components

distribution among the different levels is as below:

 16 events with severity I

 46 events with severity II

 25 events with severity III

 12 events with severity IV

Figure 11. The distribution of 99 initial basic events

depending on their severities and critical level on the system

The basic feature that constitutes the severity levels is the

unavailability value. So, if the values are in the range from 0.0 -

0.25, the component is classified under the severity IV and if they

belong to the range from 0.25 - 0.50, severity III is attached to

them. Higher values of unavailability, such as the range from 0.50

- 0.75 are related to severity II, while severity I includes the

values from 0.75 - 1.00. Unavailability is the quality of a

component not being available when needed, and it's fully related

to failure frequencies and unreliability values.

6. INTERPRETATION OF RESULTS
The results provided from the system by RWB are in accordance

with the failure model attached to each failure component

independently. The failure model chosen for system studying is

MTTF (Mean Time to Failure). This model assumes a constant

failure rate and an exponential distribution of these failures.

According to this fact, the graphical results related to system

unreliability are in the form of an exponential graph, where the

highest value of system unreliability is 1.

The previous section illustrated the graphical representations of

system unreliability depending on time (1 hour and 24 hours)

based on the main failure components, after studying the E-

Commerce applications on the cloud environment. The system

observation time assumes a system that operates continuously

with certain specific failures based on the failure model of each

component. During the functioning of the system under modeling,

the components are assumed to fail in regard to the MTTF value

depicted in the model. The model states that failure probability

values are related to exposure time, so the higher the exposure

time the higher the failure rates and as a fact also the unreliability

values.

The results indicated that the highest value of system unreliability

caused by the application components is 97.91%. This value is

related to human mistakes because of their higher frequency of

occurrence. From the other side, the lower value of system

unreliability is 16.68% due to browser problems which are easily

recoverable.

As noticed in the graphical representations, cloud components

provide higher values on system unreliability and the system

becomes obsolete The highest value of unreliability is caused by

bad planning of capacity and hardware problems with a value of

99.86%, while the component that among others causes the lower

unreliability value is cache server 79.58%.

According to usage time of the system, if all the problematic

application issues are generated, the system becomes unreliable

after 20 minutes, while if all the problematic cloud issues are

generated, the system becomes unreliable after nearly 5 minutes.

Thus, the fastest time of reaching the value 1 of system

unreliability is 2 minutes caused by the capacity component, and

the slowest time is 20 hours caused by browser problems.

Regarding components distribution, based on their severity and

criticality level on the system, the results show that the major part

of cloud components have the severities II, III and IV, while

application components have the severities I, II and III.

After evaluating specific components unreliability and their

critical level on the system, we can get the conclusions how the

system reacts against components failures over time.

The results taken from the system (E-Commerce on Cloud) are

under the minimal functional conditions of the cloud, which

means minimal conditions and resources provided by the cloud

platform. So on one side, however cloud resulted not a good way

on hosting applications due to the high level of unreliability it

causes, from the other side it offers different recovering

possibilities of the raised problems. It assures fault tolerance, load

balancing and replication by making available a large number of

servers etc.

The cloud platform functionality also depends on the deployed

application type. So, application issues can cause cloud issues. E-

Commerce sites are sites with a high load on the web server. They

support objects dynamically created and have dynamic

requirements for resources such as: CPU, memory and I/O,

requiring much more time in making them available due to the

high costs of the transactions with the database. E-Commerce

systems have strict requirements related to: response time that

must be rapid; transactions that must be safe or storage space that

must be consistent etc.

Regardless the complexity of E-Commerce applications, the

software itself is a vital contributor in the system operation, so it

is assumed that it will function normally as intended. Software

includes a set of instructions set to the hardware or to the entire

system for correct operation. Software events do not fail in the

physical sense, unless assumptions are made. So, attempting to

predict software faults or coding errors with any reliability or

accuracy is relatively difficult, so it may also need some

assumptions. Predicting and assigning human error rates for

example, is not the primary intent of a fault tree analysis, but it is

used to gain some knowledge of what happens with improper

human input or intervention at the wrong time.

7. RELATED WORKS
The increasing complexity of the e-business systems urges the

improvement of existing methods of system analysis in order to

reduce the likelihood that important threats remain unidentified

156

[6]. The CORAS approach provides one way of increasing trust

and confidence in information and communication systems based

on the integration of security risk management and graphical

semiformal modeling. The risk assessment process consists of

steps: identify context, identify risk, analyse risks, evaluate risks,

and treat risks [17]. Another paper, presents a component oriented

development approach to e-business applications that is strongly

architecture-centric. The component oriented architecture

provides a set of rules and structure for managing complexity

which provides flexibility and a framework for reuse and

integration of components to support e-business evolution [18].

Except the other methods applied in studying risk analysis, we

chose Fault Tree. The benefits of this approach is that it can easily

include design flaws, human and procedural errors which are

sometimes difficult to quantify. It is considered an excellent tool

for studying complex systems.

8. CONCLUSIONS AND FUTURE WORK
The main goal of the paper consisted on developing a dynamic

model for the evaluation of web application's reliability using

DFT technique. After introducing the success and failure space

concepts, we focused on building the system fault tree by

identifying two main components that affect system reliability, 1)

application and 2) cloud. The system under modeling included a

complete system fault tree of 99 initial basic events of failure. In

our case but also in similar systems, the opportunities for the

system to become unreliable from cloud issues are nearly twice

the opportunities of the application based on the number of failure

events (35 application/64 cloud) and unreliability values. The

average sum of unreliability values for cloud components is nearly

twice the average sum of unreliability values for application

components. The question raised is that we all use cloud

computing nowadays, but do not see such high rates of failures.

The results are related to the environment taken as a reference

point, because we decided to perform worst-case analysis, leading

to very high unreliability results, in order to generate and detect

the majority of failures on the system. The Fault Tree usage

answers the question of what can go wrong by identifying these

failure scenarios.

Advance studies can be done on the aspect of system unreliability

including E-Commerce systems on cloud environment, changing

cloud specifics that can reduce system unreliability, such as load

balancing, replication etc, in order to check how system

unreliability will change in such cases.

9. REFERENCES
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.

Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David

Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia,

"Above the Clouds: A Berkeley View of Cloud Computing",

Technical Report No. UCB/EECS-2009-28, UC Berkeley

Reliable Adaptive Distributed Systems Laboratory, February

10, 2009

[2] N. Ram Ganga Charan, S. Tirupati Rao, Dr .P.V.S Srinivas,

"Deploying an Application on the Cloud", The International

Journal of Advanced Computer Science and Applications,

(IJACSA) , Vol. 2, No. 5, 2011

[3] Marisa A. S´anchez, Juan Carlos Augusto, and Miguel

Felder, "Fault-based Testing of E-Commerce Applications",

The 2nd Workshop on Verification and Validation of

Enterprise Information Systems , 2004, Porto, Portugal

[4] Ragavan Manian, Joanne Bechta Dugan, David Coppit,

Kevin Sullivan,"Combining Various Solution Techniques for

Dynamic Fault Tree Analysis of Computer Systems", Third

IEEE International High-Assurance System Engineering

Symposium, 1998, Washington DC.,. DOI=

http://dx.doi.org/10.1109/HASE.1998.731591

[5] Clifton A. Ericson II, "Fault Tree Analysis By Design",

Proceedings of the 16th International System Safety

Conference, 1998

[6] Wang Chu, Yanli Feng, "Fault Tree Based Architectural

Analysis for E-Bussiness Systems", Proceedings of the

Second Symposium International Computer Science and

Computational Technology (Huangshan, P. R. China, 26-

28,Dec. 2009), ISCSCT ’09, pg. 052-057

[7] Marvin Rausand, Arnljot Hoyland, “System Reliability

Theory - Models, Statistical Methods and Applications”, 2nd

edition, 2004

[8] Joanne Bechta Dugan, Fellow, Kevin J. Sullivan, and David

Coppit, "Developing a Low-Cost High-Quality Software

Tool for Dynamic Fault-Tree Analysis", Proceedings of the

10th International Symposium on Software Reliability

Engineering (ISSRE'99) DOI=

http://dx.doi.org/10.1109/24.855536

[9] Daniele Codetta-Raiteri, "Extended Fault Trees Analysis

supported by Stochastic Petri Nets", Doctoral Thesis, 15

November 2005, Torino, Italy

[10] Robert Apthorpe, "A Probabilistic Approach to Estimating

Computer System Reliability", Proceedings of the 15th

USENIX Conference on Systems Administration (San Diego,

California, USA, December 2-7, 2001), LISA 2001

[11] United States Nuclear Regulatory Commission, "Fault Tree

Handbook", NUREG - 0492, 1993

[12] Michael Stamatelatos, William Vesely, Joanne Dugan,

Joseph Fragola, Joseph Minarick III, Jan Railsback, "Fault

Tree Handbook with Aerospace Applications", Version 1.1,

August 2002, Washington

[13] Giridharan Vilangadu Vijayaraghavan,"A Taxonomy of E-

Commerce Risks and Failures", Master Thesis, May 2003,

Melbourne, Florida,

[14] Isograph – Reliability Workbench with Fault Tree+

Integrated - Documentation

http://www.isograph-software.com/

[15] Jelastic Java Cloud Computing - Documentation

http://www.jelastic.com/documentation/

[16] WAR file: Java Glossary

http://mindprod.com/jgloss/warfile.html

[17] T.Dimitrakos, B.Ritchie, D.Raptis, K.Stolen, "Model based

Security Risk Analysis for Web Applications: The CORAS

Approach", Proceedings of the 2002 international

conference on EuroWeb, EuroWeb'02, UK 2002

[18] Wang Chu, Depei Qian. “A Component-Oriented

Development Approach to E-Business Applications”,

Proceedings of IEEE International Conference on eBusiness

Engineering, October 22-24, 2008, Xi’an, China, IEEE

Press. pp.45-52. DOI =

http://dx.doi.org/10.1109/ICEBE.2008.23

157

http://dx.doi.org/10.1109/HASE.1998.731591
http://dx.doi.org/10.1109/24.855536
http://www.isograph-software.com/
http://www.jelastic.com/documentation/
http://mindprod.com/jgloss/warfile.html
http://dx.doi.org/10.1109/ICEBE.2008.23

	1. INTRODUCTION
	2. DFT TECHNIQUE IN WEB APP
	2.1 System Analysis Using DFT Technique
	2.2 Fault Tree Model
	2.3 Evaluation Techniques of Fault Trees

	3. APPLICATIONS DEPLOYMENT
	4. SYSTEM MODELING
	4.1 Failures Detection
	4.2 Fault Tree Construction
	4.3 Failure Models

	5. RELIABILITY EVALUATION AND GRAPHICAL REPRESENTATIONS
	6. INTERPRETATION OF RESULTS
	7. RELATED WORKS
	8. CONCLUSIONS AND FUTURE WORK
	9. REFERENCES

