
INVESTIGATING THE PERFORMANCE OF MOTION
ESTIMATION BLOCK-MATCHING ALGORITHMS ON GPU

CARDS

Eralda Nishani
Department of Computer Engineering

Polytechnic University of Tirana
Albania

enishani@gmail.com

 Betim Çiço
 CST Faculty
 SEEU, Tetovo
FYR of Macedonia

 b.cico@seeu.mk.edu

Neki Frashëri, Prof. Dr.
 Department of Computer Engineering

Polytechnic University of Tirana
 Albania

neki.frasheri@gmail.com

ABSTRACT

In the field of video compression, motion estimation (ME) is a

process that leads to high computational complexity.

Implementation of ME block-matching (BM) algorithms on

general purpose Central Processing Unit (CPU), has resulted in

poor performance. In this paper we investigate the performance

of two BM ME algorithms: Three Step Search (TSS) and Four

Step Search (4SS) on Graphics Processing Unit (GPU) NVIDIA

Quadro 400 using the Compute Unified Device Architecture

(CUDA) platform. Both algorithms perform motion estimation on

a block-by-block basis, which is considered the simplest way in

terms of hardware and software implementation. The focus is to

achieve parallelization of the algorithms for a real time execution.

We consider two well-known test sequences: “football” and

“mad900”, with different image resolution. The results show that

the implementation on a GPU card can improve the performance

in terms of execution time, by a factor of 1000.

Categories and Subject Descriptors
I.3.1 [Computer Graphics]: Hardware Architecture – graphics

processors, parallel processing

I.4.1 [Image Processing and Computer Vision]: Compression

(Coding) – approximate methods

General Terms

Algorithms, Experimentation, Performance.

Keywords

Motion Estimation, Block-Matching Algorithm, Three Step

Search, Four Step Search, Graphics Processing Unit (GPU),

Compute Unified Device Architecture (CUDA).

1. INTRODUCTION
With the development of network and communication,

multimedia service is becoming more and more popular. Video

communication is more and more requested, like sending and

receiving real-time video during video conferencing or mobile

communication. One main problem during video transmission is

bandwidth demand. Sending several frames per second in order to

create the illusion of a continuous moving sequence with high

resolution, requires high bandwidth. As a result, video

compression was considered a solution to such a problem. There

are different compression standards from MPEG-1 to MPEG-4

and H.264/AVC [1], which focus on digital video compression.

The goal is to achieve compression, while providing acceptable

video quality.

One important process in video compression is Motion Estimation

(ME) – evaluating the motion between different frames.

Specifically, it estimates the motion parameters of moving objects

in an image sequence [2]. This process is quite complex and the

most computational intensive (more than 50% of the entire

compression process volume [3]). As a result, serial

implementation on general purpose CPUs (Central Processing

Unit) have not resulted effective. Attempts to implement motion

estimation algorithm in VLSI (Very Large Scale Integrated)

devices can be seen at [4]. The results show that the algorithm

requires too many cycles to complete, the engine becomes

complex and there are memory-access conflicts. In fact, to

manage this kind of processes, the right solution is parallel

implementation. Since VLSI implementations do not achieve the

required performance, scientists have taken in consideration using

GPUs (Graphics Processing Unit) and CUDA (Compute Unified

Device Architecture) platform.

In this article, we will study two particular motion estimation

algorithms: TSS (Three Step Search) and 4SS (Four Step Search),

that belong to the class of block-matching algorithms – the most

effective algorithms in ME.

Displacement measurement and interframe coding based on

block-matching was introduced in 1981 [5]. Since the most simple

algorithm Full Search (FS), which never found practical

implementation, there has been further improvement to this

method. The main focus is on the parallelization of block-

matching algorithms and improving their execution time.

2. MOTION ESTIMATION AND BLOCK-

MATCHING ALGORITHMS
As we have mentioned earlier, motion estimation is the process of

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

39

calculating motion between consecutive frames in a video

sequence. In order to understand ME, we have to study the

concept of a motion picture or a video sequence – how a video is

organized. Motion picture can be described as a sequence of

several frames. While frames are still pictures, that represent an

instant of the video. Once encoded, a video is several consecutive

frames shown at a particular high frequency. This frequency is

high enough to give the illusion of a continuous animation. In

practice, frame rate values vary between 24 fps (frames per

second) to 300 fps. Each frame is shown for a small fraction of a

second - for a frame rate of k fps, it is shown for 1/k seconds.

Since frames are shown so close to each other, they are expected

to be quite similar. Precisely, this is what ME exploits. The fact

that there is temporal correlation between frames, makes the

prediction possible and quite exact.

There are several ME techniques like: block matching, differential

[6,7] and Fourier transform [8]. Since frames have a rectangular

shape, dividing it into blocks is easy. As a result, block matching

method is the most popular and that is the topic addressed in this

article.

A video frame is composed of a number of pixels, which are

grouped in 8x8 blocks. According to block matching, a frame is

organized into a matrix, that contains macro blocks, composed of

the aforementioned blocks. The size of macro blocks is a multiple

of 8x8. Simulations and practical implementations have shown

that the most suitable size is 16x16. The process of ME is that a

macro block in the current frame is compared to another macro

block in the reference frame. If a similar block is found, the

motion vector is transmitted instead of the whole block. The

motion vector represents the result of motion estimation and is the

most important result of the process. Since the goal is to reduce

the amount of calculations, the search area is limited to a certain

number of p pixels around the macro block. This is called the

search parameter. A high p value means that a higher number of

calculations are needed to estimate motion. For the 16x16 macro

block, the suitable value for the search parameter is p=7. This

process is demonstrated in figure 1.

Figure 1. The process of Motion Estimation

The matching of macro blocks is based on the cost parameter. The

macro block with the lowest cost, is considered the right one.

There are several functions to calculate the cost, among which we

have chosen the following:

MSE (Mean Squared Error) – represents the expected value of

squared error loss,

where N is the side of the macro block, C and R are the pixels that

are being compared in the respective macro blocks.

The problem is how to search for the most suitable macro block.

The method defines the block matching algorithm. Researchers

have made several attempts to find the most effective algorithm.

The most simple is FS (Full Search), that compares each macro

block of the current frame with the candidates in the reference

frame. The required computations are huge due to the large

number of candidates to evaluate. As a result, it remains an ideal

algorithm, mostly theoretical and not implemented in practice.

Among the variety of block-matching algorithms that exist, we

will study:

1. TSS (Three Step Search) – The first attempt to build a fast

algorithm, that could be implemented in real life.

2. 4SS (Four Step Search) – An improvement to TSS, resulting in

a more stable and hardware-oriented algorithm.

We will shortly describe both algorithms, in order to have a

general ide on how they work and how is motion estimation

calculated.

2.1 Three Step Search Algorithm
The algorithm was first proposed by Koga et. al [9]. It is based on

the method of block-matching as mentioned earlier. In order to

implement the algorithm, the following steps are followed, as is

shown in the graph (figure 2):

Figure 2. Example of steps followed for the TSS algorithm

1. Nine points are searched in an area with the resolution of 4-

pixels/4-rows or 9x9 points. The search origin is the center point,

with the (0,0) coordinates. The point with the minimal cost is

considered the search origin for the next step.

2. The size of the search window is changed to 5x5.

The lookup still occurs through nine points. The point with the

minimal cost is considered the search origin for the next and the

last step.

3. The search window is reduced to the size of 3x3. The point

with the minimal cost in this step, defines the motion vector.

Step 1 Step 2 Step 3

1

0

1

0

2

2
)(

1 N

i

N

j

ijij RC
N

MSE

40

This procedure is repeated for every macro block in the frame, for

each frame. The result motion vectors represent motion

estimation. For a search parameter p with the value of 7, the

maximum number of search points is 9+8+8=25.

2.2 Four Step Search Algorithm
This algorithm was first introduced from Po et. al. [10] in 1996. It

came as a further improvement to TSS algorithm. As the name

suggests, the algorithm includes the following four steps:

1. Nine points are searched in a 5x5 search window, located in a

bigger search area of 15x15 size. If the point with the minimal

cost is found at the corner of the window, then the flow falls

immediately to the last step; otherwise it goes to the next step.

2. The search window is still maintained at 5x5. The search model

depends on the previous point location:

a) If the previous point is located in the corner, then five more

points are searched, according to the model in the graph (figure).

b) If the previous point is located in the middle of the horizontal

or vertical axis of the search window, then three more points are

searched; according to the model in the graph (figure).

c) If the point is at the center of the window, then the flow falls

immediately to the last step; otherwise it goes to the next step.

3.This step is the same as the second step, but in the end it is

followed directly by the fourth step.

4.The search window is reduced to the size of 3x3. The point with

the minimal cost found here, defines the direction of the motion

vector.

The procedure (example in figure 3) is repeated for each block in

the frame; the same as TSS algorithm. It is easy to tell, that if

every minimal cost point is located in the middle of the search

window, then the intermediate steps can be eliminated.

2.3 TSS versus 4SS
Compared to the first FS algorithm, TSS was faster and reduced

the number of calculations [10]. Also, it was efficient and easy to

implement. Nevertheless, the algorithm still had problems in

evaluating small movements. This was extremely important,

because experimental results [11], have shown that for real world

moving sequences, the movement area changes slowly.

On the other hand, 4SS had no problems in this area. Its

performance did not change in the case of complex movements,

like closeness of the camera or quick movements. This algorithm

was more stable and easier to implement, since it provided

hardware-oriented features.

Figure 3. Example of steps followed for the 4SS algorithm

3. CUDA CAPABLE GPUs
GPUs represent a special kind of processor, mostly built to deal

with graphical problems. In the beginning, they were suitable for

a class of applications with the following characteristics [12]:

 Requirements for high amount of calculations

 Main focus on parallelization

 Throughput is more important than latency

Lately, GPU is transforming into a powerful programmable

processor, used in other fields as well. Even though initially it was

considered for academic and scientific purposes, with the

development of last generation GPUs, real applications can be

built. It is especially requested for applications, that include large

complex calculations. In this context GPU is considered a better

solution than CPU in the field of motion estimation.

The CUDA platform is a computing engine [13], developed to

facilitate GPU usage. GPU implementations before CUDA are

hard to understand, complex and difficult to maintain. In the case

of CUDA capable GPUs, a GPU is called a GPGPU (General

Purpose GPU). A GPGPU is a logical concept, according to

which a GPU can be used to solve non graphical applications. A

GPGPU is a special kind of GPU, which resembles more to a

CPU. This is observed in the memory model. The programmer

can load and save data in the main memory. A GPGPU has its

own RAM memory, which is also known as global memory. In

the figure, is shown the CPU-GPU memory structure. In this kind

of programming model, a GPU does not act alone; there is always

interaction between CPU and GPU. As it can be seen, GPU

cannot handle all the necessary actions to solve a problem alone.

For example, the CPU intervention is needed to provide the initial

data and to save the results. We will implement our algorithms in

a NVIDIA QUADRO 400 GPU, on which we will base the

following GPU description.

3.1 GPU hardware and programming model
We can better understand the GPU architecture, by comparison to

CPU, which is also shown in the figure 4 and figure 5.

CPU architecture organization:

- Bigger size cache memories

- Limited number of ALUs (Arithmetic Logic Unit)

- Main focus on latency reduction

- SISD (Single Instruction Single Data) architect

GPU architecture organization:

Step 1 Step 2 Step 3 Step 4

41

- Small size cache memories

- High number of ALUs (Arithmetic Logic Unit)

- Main focus on throughput increase

- SIMD (Single Instruction Multiple Data) architecture

The SIMD architecture means that a single instruction is executed

on different multiple data. Furthermore, multiple SIMD units,

result in the MIMD (Multiple Instruction Multiple Data)

architecture, where each unit controls a set of functional ALUs.

Data streams that require different actions, are assigned to

different controllers. Every element of the stream is processed in

one of the functional units. This is how operations on huge data

sets are easier on GPUs.

Figure 4. Architectural organization of a typical CPU

Figure 5. Architectural organization of a typical GPU

Paralell programming in GPU is translated in programming with

threads. Threads are organized in a hierarchy in GPUs. If we look

at figure 6, we can clearly see the threads, the blocks and the

grids. Executing a program in GPU, which is known as a kernel,

creates a grid with blocks of threads. Threads within a block can:

(a) share data using a shared memory and (b) can synchronize

Figure 6. Identification of threads through block and grid IDs

their execution. Threads in different blocks cannot cooperate,

while threads in different blocks are expected to be located in the

same processor core. For this reason, the number of threads inside

a block is limited by the memory resources of the processor. A

kernel can be executed from several blocks of threads and

furthermore the blocks are organized in a grid.

3.2 GPU memory model
We will shortly describe the memory hirerarchy as well, which is

closely related to the threads. As we mentioned, during the

execution, each thread has a local private memory. Each block of

threads has a shared memory, which is visible to all the threads in

the block. In general, all threads access the same global memory.

There are two more extra read-only memory spaces, accessible by

all threads: constant and texture memory. Memory types in a

GPU:

 Register memory – is implemented on a GPU and it can be

accessed faster.

 Local memory – is located outside the chip of GPU, the

access speed is 100 times slower than the register.

 Shared memory – is used to store the parameters of the

kernel function. The access time is at the same levels as

register memory.

 Global memory - is located outside the chip of GPU, the

access speed is 100 times slower than the register. It has

bigger capacity and is accessed by all threads.

 Constant memory – is accessible by all threads and is cached

on chip, so the data hit is fast.

 Texture memory – is cached on chip and is built to serve

applications that require a certain access pattern.

3.2.1 Texture memory
We will focus on the texture memory, because this is the memory

kind, that we will use in our implementation. The texture memory

was first introduced to represent more realistic objects, enabling

image ‘drawing’ in a geometric space [14]. It is suitable for those

applications, where memory access manifest spatial locality. This

means that it is more possible for a thread to read from an address,

which is near the address read by the neighbor thread. In this

cases, texture memory brings performance improvement. Since

we are studying motion estimation algorithms, that deal with

images, this memory is suitable.

During our implementation we will consider a different number of

frames (images), to study a video sequence. Layered texture

memory, also known as texture array, which are special

constructs that enable textures to be organized as an array, with

access to an index. The biggest advantage of texture arrays is that

42

they support larger extensions than that of a unit. We will utilize

2D layered textures to store the sequence of images.

4. ALGORITHMS IMPLEMENTATION
In order to implement an algorithm in GPU, we need to take into

account that we are programming in a hybrid environment. A

program in CUDA has two important parts:

- The host program, which is executed on CPU and is

sequential

- The kernel, that part of the program executed on GPU,

parallel and run by threads.

To program in CUDA, we will use a special kind of C

programming language, CUDA C. It is C with several language

extensions to allow heterogynous programs and to provide

parallelization. To be clear, the contribution from this article is

specific to the parallelization of the algorithm, not to the

modification of the algorithm itself. There have been earlier

articles related to this field. In most of the cases like in [16],

implementations are performed on Matlab. In other articles [17],

the most simple algorithm (FS) is implemented on CUDA. In fact,

we have focused on the advantages that CUDA can bring to the

deployment of algorithms, that can be used in real life. We have

the program in C for both of our algorithms that belongs to a

group of researchers that you can find in this reference [18].

4.1 Algorithms parallelization
We are studying TSS and 4SS algorithms. The methods to

parallelize the algorithms are the same for both of them. That is

why we will describe the process only once. Some of the methods

that we use to achieve parallelism are:

1. Thread linearization – We convert the index from the 2D

space in a linear one by using these two instructions:

int x = blockIdx.x*blockDim.x +

 threadIdx.x;

int y = blockIdx.y*blockDim.y +

 threadIdx.y;

As we mentioned earlier on section 3.1, every thread is

accessible in the thread hierarchy. According to the

instructions, each parallel thread will start at an different data

index. In this way we manage to process data in parallel and

to accelerate the calculations.

2. 2D texture memory – more precisely, texture arrays, in

which are stored the sequence of frames. Fast memory access

located on the GPU chip. Studies have shown that for two

consecutive frames with very little time difference, the

movement pattern shows spatial locality. This means that if a

pixel (block) is changing location from one frame to the

other, than the neighbor pixels will follow the same model.

This complies with the purpose of the texture memory. Since

frames are images, we will use 2D texture memory.

3. Variables in the __device__ functions, are stored as

volatile. Very often, instead of keeping the variable in a

register (when it is needed in several places), the CUDA

compiler inlines the operations needed to compute its value.

This brings instructions duplication. The ‘volatile’ comes as

a solution to this problem; forcing the variable to be kept and

used. For further clarification, __device__ functions are

executed only on GPU and can be called only by the kernel.

This means that this type of variables can only be accessed

by threads.

4. Access to global memory is one of the problems in GPU

programming. It is quite slow compared to the memory

already on chip. In our case, global memory is accessed only

once, to store the final result.

The final step is during the execution of the kernel. The syntax for

calling the kernel in GPU is very particular. It specifies the grid of

threads that is needed to execute the kernel. Namely, below we

will demonstrate the case for the 4SS algorithm.

dim3 threadBlock(512,512,1);

dim3 blockGrid(width/threadBlock.x,

height/threadBlock.y, 1);

In these two instructions, two variables of dim3 type are

declared. This is a standart type for CUDA. They represent the

number of threads per block and the number of blocks per grid,

which depends on the width and height of the frame.

FSS_GPU<<<blockGrid,threadBlock,1>>>(i, j,

mv_GPU[i], width, height);

In order to call the kernel for execution, we need to provide the

two aforementioned variables. This part of the syntax <<<..

.>>> determines the execution of a function as a kernel destined

for execution on GPU.

5. IMPLEMENTATION RESULTS
Implementation is performed under the following conditions:

1) Host computer

 Operating System – Red Hat 4.4.6-3

 CPU – AMD Athlon II X3 455 – 800 MHz

 RAM – 3915104 kB

2) NVIDIA QUADRO 400

 6 MP x 8 cores/MP = 48 cores

 Global memory – 511 MB

 Shared memory – 16384 B

 Nr. of threads per warp – 32

 Max. nr. of threads per block – 512

3) CUDA platform

 Driver Version – CUDA 4.2

Both algorithms are implemented using two test sequences from

[19], precisely: “football (b)” and “mad900”. The format of the

sequences is CIF (Common Interchange Format), with the

following resolutions:

 “futboll (b)” - 352 x 388

 “mad900” - 352 x 240

43

In our case, the CIF format is suitable, since the size of the frames

is a multiple of the block size (16x16) that we use. We take in

consideration 25 frames, since this is the most common frame rate

used in video transmission to give the illusion of continuous

movement. Each of the frames extracted form the video sample,

are converted into the PGM (Portable Gray Map) format. Usually,

in programming projects, PGM format is considered more

suitable, because of the simple data process. The results can be

observed in the images below (figures 7 and 8): the original frame

and the frame with the superposed motion vectors.

Figure 7. An example frame from the “futboll” test sequence

Figure 8. Motion vectors on the “futboll” test sequence

In the tables is presented the execution time for each algorithm, in

CPU and GPU, according to the different number of frames.

To calculate the speedup we use the formula above. Results show

that for the “futboll” sequence speedup from the TSS algorithm is

64 times; while 4SS brings an acceleration of 80 times. For the

“mad900” sequenec, speedup from the TSS algorithm is 41 times;

while 4SS brings an acceleration of 52 times.

Table 1. Execution time for “futboll” test sequence

Time 4SS – CPU 4SS – GPU TSS – CPU TSS – GPU

(ms)

5 19.621 0.128000 26.660010 0.246000

10 31.191000 0.360000 42.456001 0.711000

15 45.654999 0.780000 62.310001 1.396000

20 59.396999 1.147500 82.778000 2.291000

25 72.928001 1.179400 102.329002 3.388000

Table 2. Execution time for “mad009” test sequence

Time

(ms)
4SS – CPU 4SS –GPU TSS –CPU TSS -GPU

5 13.684000 0.141000 16.139999 0.243000

10 22.825001 0.366600 33.034000 0.705000

15 32.131001 0.745000 45.487999 1.397000

20 42.637001 1.215600 60.893002 2.239000

25 52.935001 2.045000 75.577003 3.389000

On one hand, execution time evaluates the GPU performance

compared to CPU. On the other hand, the PSNR (Peak-Signal-to-

Noise-Ratio) parameter and the MSE, are used to evaluate the

accuracy of the algorithms prediction. PSNR is calculated from

the following formula and it depends on MSE:

where MAX is calculated as

The results from the implementation are given in the graphics

(figures 9 and 10). We can see that the values for the PSNR vary

in the range [22.735538;27.829149]. While, the values of

MSE belong in the range [132.049225;151.492944].

The acceptable values of PSNR for the process of video

compression are between 30 – 50 dB. Our results show there is

deterioriation in the image quality.

6. DISCUSSION
To evaluate the performance of GPU over CPU we refer to the

execution time. Speedup calculations show that GPU gives

higher performance. If we compare the algorithms, 4SS brings

higher speedup than TSS, since it is an improvement to TSS. The

4SS algorithm is focused on the search pattern that begins in the

frame center, reducing the calculation cost. On the other side, TSS

uses a search model, that is more uniform and more inclusive.

To evaluate the compression quality; in this case the quality of

motion estimation process; we refer to PSNR and MSE.

According to the graphics, PSNR values increase with the

increase of frame number, while MSE values decrease. This

means that for a larger number of frames, the error is lower and

the prediction is more accurate. Regarding the quality of the

prediction,

MSE

MAX
PSNR

2

10

)(
log10

12 __ bitsofnr

orithmaparallelofTime

orithmaserialofTime
Speedup

lg___

lg___

44

Figure 9. PSNR dependency on nr. of frames for both test

sequences

Figure 10. MSE dependency on nr. of frames for both test

sequences

we observe that the algorithm that brings higher acceleration

(4SS), also brings lower quality (lower values of PSNR).

This is one of the biggest dilemmas in the field of video

compression: quality vs. speed. Specifically, we are more

interested in the speedup of the process, since it is one of the most

problematic parts. Also, one of the goals for the following phase

in video compression (motion compesation), is to reduce the

prediction error. So, we can expect a slight decrease in the values,

as long as they are acceptable.

7. CONCLUSIONS
In this article, we studied and evaluated the performance of block-

matching motion estimation algorithms, TSS and 4SS. We

focused on the main problem of the process: complex and large

number of calculations. The solution to this issue is

parallelization. Implementing the algorithms on a CUDA capable

GPU, resulted in higher performance compared to CPU. The

downside is that there was a deterioration in the image quality.

Even though the values were at an acceptable level, there is still

need for improvement.

There is the possibility for further studies. One example could be

the performance investigation of these algorithms on multiple

GPU cards [17]. We would expect a linear acceleration with the

growing number of GPUs. Nevertheless, there are some

conditions to take into consideration. We can not know in advance

what impact the overhead of data transfer between GPUs would

have on the general performance. There is also the problem of

GPU cards scheduling. In the end, we can say that in the future

there is still work to be done in the field of implementing motion

estimation algorithms on GPU cards.

8. REFERENCES
[1] Joshi, R., Rai, R. K., and Ratnottar, J. 2012. Review of

different standarts for digital video compression technique.

In International Journal of advancement in electronics and

computer engineering (Volume 1, Issue 1, April 2012), ISSN

2278 -1412, 22-38.

[2] Mang, H., Chou, Y., and Cheng,S.1997. Motion Estimation

for video coding standarts. In Journal of VLSI Signal

Processing (Volume 17, Issue 2/3, The Netherlands, 1997),

113-136. DOI=

http://doi.acm.org/10.1023/A:1007994620638.

[3] Guttag, K. M., Gove, R. J., and Van Aken, J. R. 1992. A

single-chip multiprocessor for multimedia: the MVP. In

Computer Graphics and Applications (Texas Instrum.,

Houston, TX, USA, November, 1992), 53 - 64. DOI=

http://doi.acm.org/10.1009/38.163625.

[4] Dutta, S., and Wol, W. 1996. A flexible parallel architecure

adapted to block-matching motion-estimation algorithms. In

Journal IEEE Transactions on Circuits and Systems for

Video Technology (Volume 6, Issue 11, NJ, USA, February,

1996), 74-86.

[5] Jain, J. R., and Jain, A. K. 1981. Displacement measurement

and its application in interframe image coding. In IEEE

Transactions on Communications (Volume COM-29, Issue

12, December, 1981).

[6] Hang, H., Chou, Y. and Cheng, S. 1997. Motion estimation

for video coding standarts. In Journal of VLSI Signal

Processing Systems (Volume 17, Issue 2/3, MA, USA,

November, 1997), 113-136.

[7] Limb, J., and Murphy, J. 1975. Estimating the velocity of

moving images in television signals. In Computer graphics

and image processing. (Volume 4, Issue 4, December, 1975),

311-327. DOI=
 http://dx.doi.org/10.1016/0146-664X(75)90001-5.

[8] Haskell, B. 1974. Frame-to-frame coding of television

pictures using two-dimensional Fourier transforms. In

Journal IEEE Transactions on Information Theory. (Volume

20, Issue 1, January, 1974), 119-120. DOI=
 http://doi.acm.org/10.1109/TIT.1974.1055161.

[9] Koga, T., Linuma, K., Hirano, A., Iijima, Y., and Ishiguro, T.

1981. Motion compensated interframe coding for video

conferencing. In National Telecommunications Conference.

[10] Po, L., and Ma, W. 1996.A novel four-step search algorithm

for fast block motion estimation. In IEEE Transactions on

45

http://doi.acm.org/10.1023/A:10079946206381
http://doi.acm.org/10.1009/38.1636251
http://dx.doi.org/10.1016/0146-664X(75)90001-5
http://dx.doi.org/10.1016/0146-664X(75)90001-5

Circuits and Systems for Video Technology. (Volume 6,

Issue 3, June, 1996), 313-317. DOI=
http://doi.acm.org/10.109/76.499840.

[11] Li, R., Zeng, B., and Liou, M. 1994. A new three-step search

algorithm for block motion estimation. In Journal IEEE

Transactions on Circuits and Systems for Video Technology.

(Volume 4, Issue 4, August, 1994), 438-442. DOI=

http://doi.acm.org/10.1109/76.313138.

[12] Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., and

Phillips, J. 2008. Graphics Processing Units - powerful,

programmable, and highly parallel - are increasingly

targeting general-purpose computing applications. In

Proceedings of the IEEE. (Volume 95, Issue 5, May, 2008),

879-899

[13] NVIDIA CUDA, CUDA programming guide, version 2.3.,

February, 2010

[14] “The CUDA Handbook”, Pearson Education, 2012

[15] “CUDA by Example”, Jason Sanders, Edward Kandrot, 2010

[16] Barjataya, A. Block matching algorithms for motion

estimation. DIP 6620 Spring 2004 Final Project Paper

[17] Massanes, F., Cadennes, M., and Brankov, J. G. 2010.

CUDA implementation of a block-matching algorithm for

multiple GPU cards

[18] “Various Advanced Motion Estimation Research

Development Package”, Dr. L.M. Po, Dr. C.K. Cheung, Dr.

C.H. Cheung, Mr. C.W. Lam

http://en.pudn.com/downloads175/sourcecode/zip/detail8149
14_en.html

[19] Test sequences - Xiph.org Video Test Media -

http://media.xiph.org/video/derf/

46

http://doi.acm.org/10.109/76.499840
http://doi.acm.org/10.1109/76.313138
http://en.pudn.com/downloads175/sourcecode/zip/detail814914_en.html
http://en.pudn.com/downloads175/sourcecode/zip/detail814914_en.html
http://media.xiph.org/video/derf/

