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ABSTRACT 

In the field of video compression, motion estimation (ME) is a 

process that leads to high computational complexity. 

Implementation of ME block-matching (BM) algorithms on 

general purpose Central Processing Unit (CPU), has resulted in 

poor performance.  In this paper we investigate the performance 

of two BM ME algorithms: Three Step Search (TSS) and Four 

Step Search (4SS) on Graphics Processing Unit (GPU) NVIDIA 

Quadro 400 using the Compute Unified Device Architecture 

(CUDA) platform. Both algorithms perform motion estimation on 

a block-by-block basis, which is considered the simplest way in 

terms of hardware and software implementation. The focus is to 

achieve parallelization of the algorithms for a real time execution. 

We consider two well-known test sequences: “football” and 

“mad900”, with different image resolution. The results show that 

the implementation on a GPU card can improve the performance 

in terms of execution time, by a factor of 1000. 

 

Categories and Subject Descriptors 
I.3.1 [Computer Graphics]: Hardware Architecture – graphics 

processors, parallel processing 

 

I.4.1 [Image Processing and Computer Vision]: Compression 

(Coding) – approximate methods 

General Terms 

Algorithms, Experimentation, Performance. 

Keywords 

Motion Estimation, Block-Matching Algorithm, Three Step 

Search, Four Step Search, Graphics Processing Unit (GPU), 

 

Compute Unified Device Architecture (CUDA). 

 

1. INTRODUCTION 
With the development of network and communication, 

multimedia service is becoming more and more popular. Video 

communication is more and more requested, like sending and 

receiving real-time video during video conferencing or mobile 

communication. One main problem during video transmission is 

bandwidth demand. Sending several frames per second in order to 

create the illusion of a continuous moving sequence with high 

resolution, requires high bandwidth.  As a result, video 

compression was considered a solution to such a problem. There 

are different compression standards from MPEG-1 to MPEG-4 

and H.264/AVC [1], which focus on digital video compression. 

The goal is to achieve compression, while providing acceptable 

video quality.  

 

One important process in video compression is Motion Estimation 

(ME) – evaluating the motion between different frames. 

Specifically, it estimates the motion parameters of moving objects 

in an image sequence [2]. This process is quite complex and the 

most computational intensive (more than 50% of the entire 

compression process volume [3]). As a result, serial 

implementation on general purpose CPUs (Central Processing 

Unit) have not resulted effective. Attempts to implement motion 

estimation algorithm in VLSI (Very Large Scale Integrated)  

devices can be seen at [4]. The results show that the algorithm 

requires too many cycles to complete, the engine becomes 

complex and there are memory-access conflicts. In fact, to 

manage this kind of processes, the right solution is parallel 

implementation. Since VLSI implementations do not achieve the 

required performance, scientists have taken in consideration using 

GPUs (Graphics Processing Unit) and CUDA (Compute Unified 

Device Architecture) platform.   

 

In this article, we will study two particular motion estimation 

algorithms: TSS (Three Step Search) and 4SS (Four Step Search), 

that belong to the class of block-matching algorithms –  the most 

effective algorithms in ME.  

Displacement measurement and interframe coding based on 

block-matching was introduced in 1981 [5]. Since the most simple 

algorithm Full Search (FS), which never found practical 

implementation, there has been further improvement to this 

method. The main focus is on the parallelization of block-

matching algorithms  and improving their execution time.  

 

 

 

2. MOTION ESTIMATION AND BLOCK-

MATCHING ALGORITHMS 
As we have mentioned earlier, motion estimation is the process of 
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calculating motion between consecutive frames in a video 

sequence. In order to understand ME, we have to study the 

concept of a motion picture or a video sequence – how a video is 

organized. Motion picture can be described as a sequence of 

several frames. While frames are still pictures, that represent an 

instant of the video. Once encoded, a video is several consecutive 

frames shown at a particular high frequency. This frequency is 

high enough to give the illusion of a continuous animation. In 

practice, frame rate values vary between 24 fps (frames per 

second) to 300 fps. Each frame is shown for a small fraction of a 

second -  for a frame rate of k fps, it is shown for 1/k seconds. 

Since frames are shown so close to each other, they are expected 

to be quite similar. Precisely, this is what ME exploits. The fact 

that there is temporal correlation between frames, makes the 

prediction possible and quite exact.   

 

There are several ME techniques like: block matching, differential 

[6,7] and Fourier transform [8]. Since frames have a rectangular 

shape, dividing it into blocks is easy. As a result, block matching 

method is the most popular and that is the topic addressed in this 

article.  

 

A video frame is composed of a number of pixels, which are 

grouped in 8x8 blocks. According to block matching, a frame is 

organized into a matrix, that contains macro blocks, composed of 

the aforementioned blocks. The size of macro blocks is a multiple 

of 8x8. Simulations and practical implementations have shown 

that the most suitable size is 16x16. The process of ME is that a 

macro block in the current frame is compared to another macro 

block in the reference frame. If a similar block is found, the 

motion vector is transmitted instead of the whole block. The 

motion vector represents the result of motion estimation and is the 

most important result of the process. Since the goal is to reduce 

the amount of calculations, the search area is limited to a certain 

number of p pixels around the macro block. This is called the 

search parameter. A high p value means that a higher number of 

calculations are needed to estimate motion. For the 16x16 macro 

block, the suitable value for the search parameter is p=7. This 

process is demonstrated in figure 1. 

 

 
 

Figure 1. The process of Motion Estimation 

 

The matching of macro blocks is based on the cost parameter. The 

macro block with the lowest cost, is considered the right one. 

There are several functions to calculate the cost, among which we 

have chosen the following: 

 

MSE (Mean Squared Error) – represents the expected value of 

squared error loss,  

 

 

 

 

where N is the side of the macro block, C and R are the pixels that 

are being compared in the respective macro blocks.  

 

The problem is how to search for the most suitable macro block. 

The method defines the block matching algorithm. Researchers 

have made several attempts to find the most effective algorithm. 

The most simple is FS (Full Search), that compares each macro 

block of the current frame with the candidates in the reference 

frame. The required computations are huge due to the large 

number of candidates to evaluate. As a result, it remains an ideal 

algorithm, mostly theoretical and not implemented in practice. 

Among the variety of block-matching algorithms that exist, we 

will study: 

 

1. TSS  (Three Step Search) – The first attempt to build a fast 

algorithm, that could be implemented in real life. 

 

2. 4SS (Four Step Search) – An improvement to TSS, resulting in 

a  more stable and hardware-oriented algorithm.   

 

We will shortly describe both algorithms, in order to have a 

general ide on how they work and how is motion estimation 

calculated. 

2.1  Three Step Search Algorithm 
The algorithm was first proposed by Koga et. al [9]. It is based on 

the method of block-matching as mentioned earlier. In order to 

implement the algorithm, the following steps are followed, as is 

shown in the graph (figure 2 ): 

 
 

Figure 2. Example of steps followed for the TSS algorithm 

 

1. Nine points are searched in an area with the resolution of 4-

pixels/4-rows or 9x9 points. The search origin is the center point, 

with the (0,0) coordinates. The point with the minimal cost is 

considered the search origin for the next step. 

 

2. The size of the search window is changed to 5x5.  

The lookup still occurs through nine points. The point with the 

minimal cost is considered the search origin for the next and the 

last step. 

 

3. The search window is reduced to the size of 3x3. The point 

with the minimal cost in this step, defines the motion vector. 

 

Step 1 Step 2 Step 3 
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This procedure is repeated for every macro block in the frame, for 

each frame. The result motion vectors represent motion 

estimation. For a search parameter p with the value of 7, the 

maximum number of search points is 9+8+8=25. 

 

2.2  Four Step Search Algorithm 
This algorithm was first introduced from Po et. al. [10] in 1996. It 

came as a further improvement to TSS algorithm. As the name 

suggests, the algorithm includes the following four steps: 

 

1. Nine points are searched in a 5x5 search window, located in a 

bigger search area of 15x15 size. If the point with the minimal 

cost is found at the corner of the window, then the flow falls 

immediately to the last step; otherwise  it goes to the next step. 

 

2. The search window is still maintained at 5x5. The search model 

depends on the previous point location: 

 

a) If the previous point is located in the corner, then five more 

points are searched, according to the model in the graph (figure ). 

 

b) If the previous point is located in the middle of the horizontal 

or vertical axis of the search window, then three more points are 

searched; according to the model in the graph (figure ).  

 

c) If the point is at the center of the  window, then the flow falls 

immediately to the last step; otherwise  it goes to the next step. 

 

3.This step is the same as the second step, but in the end it is 

followed directly by the fourth step. 

 

4.The search window is reduced to the size of 3x3. The point with 

the minimal cost found here, defines the direction of the motion 

vector. 

 

The procedure (example in figure 3) is repeated for each block in 

the frame; the same as TSS algorithm. It is easy to tell, that if 

every minimal cost point is located in the middle of the search 

window, then the intermediate steps can be eliminated.  

 

2.3  TSS versus 4SS 
Compared to the first FS algorithm, TSS was faster and reduced 

the number of calculations [10]. Also, it was efficient and easy to 

implement. Nevertheless, the algorithm still had problems in 

evaluating small movements.  This was extremely important, 

because experimental results [11],  have shown that for real world 

moving sequences, the movement area changes slowly.  

 

On the other hand, 4SS had no problems in this area. Its 

performance did not change in the case of complex movements, 

like closeness of the camera or quick movements. This algorithm 

was more stable and easier to implement, since it provided 

hardware-oriented features. 

 

 
 

Figure 3. Example of steps followed for the 4SS algorithm 

3.  CUDA CAPABLE GPUs  
GPUs represent a special kind of processor, mostly built to deal 

with graphical problems. In the beginning, they were suitable for 

a class of applications with the following characteristics [12]: 

 Requirements for high amount of calculations 

 Main focus on parallelization 

 Throughput is more important than latency 

 

Lately, GPU is transforming into a powerful programmable 

processor, used in other fields as well. Even though initially it was 

considered for academic and scientific purposes, with the 

development of last generation GPUs, real applications can be 

built. It is especially requested for applications, that include large 

complex calculations. In this context GPU is considered a better 

solution than CPU in the field of motion estimation.  

 

The CUDA platform is a computing engine [13], developed to 

facilitate GPU usage. GPU implementations before CUDA are 

hard to understand, complex and difficult to maintain. In the case 

of CUDA capable GPUs, a GPU is called a GPGPU (General 

Purpose GPU). A GPGPU is a logical concept, according to 

which a GPU can be used to solve non graphical applications. A 

GPGPU is a special kind of GPU, which resembles more to a 

CPU. This is observed in the memory model. The programmer 

can load and save data in the main memory. A GPGPU has its 

own RAM memory, which is also known as global memory. In 

the figure, is shown the CPU-GPU memory structure. In this kind 

of programming model, a GPU does not act alone; there is always 

interaction between CPU and GPU. As it can be seen, GPU 

cannot handle all the necessary actions to solve a problem alone. 

For example, the CPU intervention is needed to provide the initial 

data and to save the results. We will implement our algorithms in 

a NVIDIA QUADRO 400 GPU, on which we will base the 

following GPU description. 

3.1  GPU hardware and programming model 
We can better understand the GPU architecture, by comparison to 

CPU, which is also shown in the figure 4 and figure 5. 

 

CPU architecture organization: 

- Bigger size cache memories 

- Limited number of ALUs (Arithmetic Logic Unit) 

- Main focus on latency reduction 

- SISD (Single Instruction Single Data) architect 

GPU architecture organization: 

Step 1 Step 2 Step 3  Step 4 
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- Small size cache memories 

- High number of ALUs (Arithmetic Logic Unit) 

- Main focus on throughput increase 

- SIMD (Single Instruction Multiple Data) architecture 

 

The SIMD architecture means that a single instruction is executed 

on different multiple data. Furthermore, multiple SIMD units, 

result in the MIMD (Multiple Instruction Multiple Data) 

architecture, where each unit controls a set of functional ALUs. 

Data streams that require different actions, are assigned to 

different controllers. Every element of the stream is processed in 

one of the functional units. This is how operations on huge data 

sets are easier on GPUs.  

 

 
 

Figure 4. Architectural organization of a typical CPU 

 

 
 

Figure 5. Architectural organization of a typical GPU 

 

Paralell programming in GPU is translated in programming with 

threads. Threads are organized in a hierarchy in GPUs. If we look 

at figure 6, we can clearly see the threads, the blocks and the 

grids. Executing a program in GPU, which is known as a kernel, 

creates a grid with blocks of threads. Threads within a block can: 

(a) share data using a shared memory and (b) can synchronize  

Figure 6. Identification of threads through block and grid IDs 

 

their execution. Threads in different blocks cannot cooperate, 

while threads in different blocks are expected to be located in the 

same processor core. For this reason, the number of threads inside 

a block is limited by the memory resources of the processor. A 

kernel can be executed from several blocks of threads and 

furthermore the blocks are organized in a grid. 
 

3.2  GPU memory model 
We will shortly describe the memory hirerarchy as well, which is 

closely related to the threads. As we mentioned, during the 

execution, each thread has a local private memory. Each block of 

threads has a shared memory, which is visible to all the threads in 

the block. In general, all threads access the same global memory.  

 

There are two more extra read-only memory spaces, accessible by 

all threads: constant and texture memory. Memory types in a 

GPU: 

 Register memory – is implemented on a GPU and it can be 

accessed faster.  

 Local memory – is located outside the chip of GPU, the 

access speed is 100 times slower than the register.  

 Shared memory – is used to store the parameters of the 

kernel function. The access time is at the same levels as 

register memory.  

 Global memory - is located outside the chip of GPU, the 

access speed is 100 times slower than the register. It has 

bigger capacity and is accessed by all threads. 

 Constant memory – is accessible by all threads and is cached 

on chip, so the data hit is fast.  

 Texture memory – is cached on chip and is built to serve 

applications that require a certain access pattern.  

 

3.2.1  Texture memory 
We will focus on the texture memory, because this is the memory 

kind, that we will use in our implementation. The texture memory 

was first introduced to represent more realistic objects, enabling 

image ‘drawing’ in a geometric space [14]. It is suitable for those 

applications, where memory access manifest spatial locality. This 

means that it is more possible for a thread to read from an address, 

which is near the address read by the neighbor thread. In this 

cases, texture memory brings performance improvement. Since 

we are studying motion estimation algorithms, that deal with 

images, this memory is suitable.  

 

During our implementation we will consider a different number of 

frames (images), to study a video sequence. Layered texture 

memory, also known as texture array, which are special 

constructs that enable textures to be organized as an array, with 

access to an index. The biggest advantage of texture arrays is that 
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they support larger extensions than that of a unit. We will utilize 

2D layered textures to store the sequence of images.  

 

4.  ALGORITHMS IMPLEMENTATION 
In order to implement an algorithm in GPU, we need to take into 

account that we are programming in a hybrid environment. A 

program in CUDA has two important parts: 

 

- The host program, which is executed on CPU and is 

sequential 

- The kernel, that part of the program executed on GPU, 

parallel and run by threads. 

 

To program in CUDA, we will use a special kind of C 

programming language, CUDA C. It is C with several language 

extensions to allow heterogynous programs and to provide 

parallelization. To be clear, the contribution from this article is 

specific to the parallelization of the algorithm, not to the 

modification of the algorithm itself. There have been earlier 

articles related to this field. In most of the cases like in [16], 

implementations are performed on Matlab. In other articles [17],  

the most simple algorithm (FS) is implemented on CUDA. In fact, 

we have focused on the advantages that CUDA can bring to the 

deployment of algorithms, that can be used in real life. We have 

the program in C for both of our algorithms that belongs to a 

group of researchers that you can find in this reference [18].   
 

4.1  Algorithms parallelization 
We are studying TSS and 4SS algorithms. The methods to 

parallelize the algorithms are the same for both of them. That is 

why we will describe the process only once. Some of the methods 

that we use to achieve parallelism are: 

1. Thread linearization – We convert the index from the 2D 

space in a linear one  by using these two instructions: 

 

int x = blockIdx.x*blockDim.x +  

  threadIdx.x; 

 

int y = blockIdx.y*blockDim.y +  

  threadIdx.y; 

As we mentioned earlier on section 3.1, every thread is 

accessible in the thread hierarchy. According to the 

instructions, each parallel thread will start at an different data 

index. In this way we manage to process data in parallel and 

to accelerate the calculations.  

 

2. 2D texture memory – more precisely, texture arrays, in 

which are stored the sequence of frames. Fast memory access 

located on the GPU chip. Studies have shown that for two 

consecutive frames with very little time difference, the 

movement pattern shows spatial locality. This means that if a 

pixel (block) is changing location from one frame to the 

other, than the neighbor pixels will follow the same model. 

This complies with the purpose of the texture memory. Since 

frames are images, we will use 2D texture memory.  

 

3. Variables in the __device__ functions, are stored as 

volatile. Very often, instead of keeping the variable in a 

register (when it is needed in several places), the CUDA 

compiler inlines the operations needed to compute its value. 

This brings instructions duplication. The ‘volatile’ comes as 

a solution to this problem; forcing the variable to be kept and 

used. For further clarification, __device__ functions are 

executed only on GPU and can be called only by the kernel. 

This means that this type of variables can only be accessed 

by threads. 

 

4. Access to global memory is one of the problems in GPU 

programming. It is quite slow compared to the memory 

already on chip. In our case, global memory is accessed only 

once, to store the final result. 

 

The final step is during the execution of the kernel. The syntax for 

calling the kernel in GPU is very particular. It specifies the grid of 

threads that is needed to execute the kernel. Namely, below we 

will demonstrate the case for the 4SS algorithm. 

 
dim3 threadBlock(512,512,1); 

 

dim3 blockGrid(width/threadBlock.x, 

height/threadBlock.y, 1); 

 

In these two instructions, two variables of dim3 type are 

declared. This is a standart type for CUDA. They represent the 

number of threads per block and the number of blocks per grid, 

which depends on the width and height of the frame.  

 
FSS_GPU<<<blockGrid,threadBlock,1>>>(i, j, 

mv_GPU[i], width, height); 

In order to call the kernel for execution, we need to provide the 

two aforementioned variables. This part of the syntax <<<.. 

.>>> determines the execution of a function as a kernel destined 

for execution on GPU.  

 

5.  IMPLEMENTATION RESULTS 
Implementation is performed under the following conditions: 

 

1) Host computer 

  

 Operating System – Red Hat 4.4.6-3 

 CPU – AMD Athlon II X3 455 – 800 MHz 

 RAM – 3915104 kB 

 

2) NVIDIA QUADRO 400 

 

 6 MP x 8 cores/MP = 48 cores 

 Global memory – 511 MB 

 Shared memory – 16384 B 

 Nr. of threads per warp – 32 

 Max. nr. of threads per block – 512 

 

3) CUDA platform 

 

 Driver Version – CUDA 4.2 

 

Both algorithms are implemented using two test sequences from 

[19], precisely: “football (b)” and “mad900”. The format of the 

sequences is CIF (Common Interchange Format), with the 

following resolutions:  

 

 “futboll (b)”   -  352 x 388 

 “mad900”      -  352 x 240   
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In our case, the CIF format is suitable, since the size of the frames 

is a multiple of the block size (16x16) that we use. We take in 

consideration 25 frames, since this is the most common frame rate 

used in video transmission to give the illusion of continuous 

movement. Each of the frames extracted form the video sample, 

are converted into the PGM (Portable Gray Map) format. Usually, 

in programming projects, PGM format is considered more 

suitable, because of the simple data process. The results can be 

observed in the images below (figures 7 and 8): the original frame 

and the frame with the superposed motion vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. An example frame from the “futboll” test sequence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 8. Motion vectors on the “futboll” test sequence 

In the tables is presented the execution time for each algorithm, in 

CPU and GPU, according to the different number of frames.  

 

 

 

 

To calculate the speedup we use the formula above. Results show 

that for the “futboll” sequence speedup from the TSS algorithm is 

64 times; while 4SS brings an acceleration of 80 times. For the 

“mad900” sequenec, speedup from the TSS algorithm is 41 times; 

while 4SS brings an acceleration of 52 times. 

 

Table 1. Execution time for  “futboll” test sequence 

Time 4SS –  CPU 4SS  – GPU TSS  –  CPU TSS – GPU 

(ms) 

5 19.621 0.128000 26.660010 0.246000 

10 31.191000 0.360000 42.456001 0.711000 

15 45.654999 0.780000 62.310001 1.396000 

20 59.396999 1.147500 82.778000 2.291000 

25 72.928001 1.179400 102.329002 3.388000 

 

 

Table 2. Execution time for  “mad009” test sequence 

Time 

(ms) 
4SS – CPU 4SS –GPU TSS –CPU TSS -GPU 

5 13.684000 0.141000 16.139999 0.243000 

10 22.825001 0.366600 33.034000 0.705000 

15 32.131001 0.745000 45.487999 1.397000 

20 42.637001 1.215600 60.893002 2.239000 

25 52.935001 2.045000 75.577003 3.389000 

 

On one hand, execution time evaluates the GPU performance 

compared to CPU. On the other hand, the PSNR  (Peak-Signal-to-

Noise-Ratio) parameter and the MSE, are used to evaluate the 

accuracy of the algorithms prediction. PSNR is calculated from 

the following formula and it depends on MSE: 

 

  

 

 

 

where MAX is calculated as  

 

The results from the implementation are given in the graphics 

(figures 9 and 10). We can see that the values for the PSNR vary 

in the range [22.735538;27.829149]. While, the values of 

MSE belong in the range [132.049225;151.492944]. 

The acceptable values of PSNR for the process of video 

compression are between 30 – 50 dB. Our results show there is 

deterioriation in the image quality.  

 

6.  DISCUSSION 
To evaluate the performance of GPU over CPU we refer to the 

execution time. Speedup calculations show that GPU gives  

higher performance. If we compare the algorithms, 4SS brings 

higher speedup than TSS, since it is an improvement to TSS. The 

4SS algorithm is focused on the search pattern that begins in the 

frame center, reducing the calculation cost. On the other side, TSS 

uses a search model, that is more uniform and more inclusive.  

 

To evaluate the compression quality; in this case the quality of 

motion estimation process; we refer to PSNR and MSE. 

According to the graphics, PSNR values increase with the 

increase of frame number, while MSE values decrease. This 

means that for a larger number of frames, the error is lower and 

the prediction is more accurate. Regarding the quality of the 

prediction,  
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Figure 9. PSNR dependency on nr. of frames for both test 

sequences 

 

 

Figure 10. MSE dependency on nr. of frames for both test 

sequences 

we observe that the algorithm that brings higher acceleration 

(4SS), also brings lower quality (lower values of PSNR). 

This is one of the biggest dilemmas in the field of video 

compression: quality vs. speed. Specifically, we are more 

interested in the speedup of the process, since it is one of the most 

problematic parts. Also, one of the goals for the following phase 

in video compression (motion compesation), is to reduce the 

prediction error. So, we can expect a slight decrease in the values, 

as long as they are acceptable. 

 

7.  CONCLUSIONS 
In this article, we studied and evaluated the performance of block-

matching motion estimation algorithms, TSS and 4SS. We 

focused on the main problem of the process: complex and large 

number of calculations. The solution to this issue is 

parallelization. Implementing the algorithms on a CUDA capable 

GPU, resulted in higher performance compared to CPU. The 

downside is that there was a deterioration in the image quality. 

Even though the values were at an acceptable level, there is still 

need for improvement.  

 

There is the possibility for further studies. One example could be 

the performance investigation of these algorithms on multiple 

GPU cards [17]. We would expect a linear acceleration with the 

growing number of GPUs. Nevertheless, there are some 

conditions to take into consideration. We can not know in advance 

what impact the overhead of data transfer between GPUs would 

have on the general performance. There is also the problem of 

GPU cards scheduling. In the end, we can say that in the future 

there is still work to be done in the field of implementing motion 

estimation algorithms on GPU cards. 
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