
Architecture for an Ontology and Web Service
Modelling Studio

Holger Lausen and Michael Felderer

DERI Digital Enterprise Research Institute
{holger.lausen,michael.felderer }@deri.org

Abstract. This paper outlines the architecture of a WSMO Studio, that aims at
developing formal specification according to the WSMO Meta Model. Develop-
ing formal specification according to a specific formalism is not an easy task. As
soon as the descriptions get numerous, large and different authors are involved
manual editing without tool support does not scale anymore. In the field of on-
tology editors are already various tools available, however derivations in the un-
derlying formalism and the special extension needs for a WSMO Studio require
a custom development. In this paper we outline the concrete functional require-
ments and propose an open architecture for a studio based on the analyzes of
existing work.

1 Introduction

The Web Service Modelling Ontology (WSMO) [18] defines the conceptual elements
that have to be expressed in order to describe and use Semantic Web Services. Those
are Ontologies, Mediators, Web Services and Goals. A component based approach can
enable integration and reuse of common functionality, so that this work can be taken
as the basis of future extension, e.g. for a versioning system or for the integration of
different reasoners for various tasks.

The aim of this paper is to outline the exact functional requirements as well as the
architecture we are using to accomplish these requirements. Thereby we will take into
account existing work mainly in the area of ontology management and finally outline
an open architecture for a WSMO Studio.

2 Related Work

Several editors for ontologies have been already developed [9], especially Protéǵe2000
[8] has gained a considerable user community. Its success has been build up on 1) its
open source model, 2) its extensible plug-in architecture and 3) its flexible Meta Model.
Thus it was a natural starting point for our first implementation [14]. It turned out that
it was easy to capture the core of the ontological model of WSMO and to reuse Protéǵe
features that allow the basic modification of ontologies. Based on previous work [20]
it was also possible to provide a basic connection to an inference engine. Addition-
ally we integrated a basic editor for logical expressions, with syntax completion and
validation. However besides the positive effects of reuse also principle problems have



2

been encountered: The OKBC [5] compatible Meta Model is able to capture concepts,
attributes of concepts and instances, however n-ary relations, functions, variables and
especially their axiomatizations, as well as the concept of mediators turned out to be
difficult to capture. More over we have encountered software engineering related prob-
lems, when designing the user interface. The event model and some of the user interface
elements have been difficult to adopt. Other Web Service specific aspects like the in-
terface description we did not attempt to implement, but foresee problems, since these
elements have only very little in common with Protéǵe general purpose of ontology
editing and knowledge acquisition.

A second WSMO Editor has been developed in the course of the SWWS project [7].
This custom Java/Swing application is developed based on the epistemological founda-
tions of WSMO and provides graphical means to modify each modelling element. In
addition the SWWS Studio provides an editor for orchestration. However its design as
proprietary application does not allow extensions, e.g. if a special syntax export or some
specific restrictions on a modelling elements are needed, no modifications can be made
to this tool by a 3rd party.

Both approaches have not been able to fully meet the expected functionality. In
order to develop an architecture able to meet the requirements we will elaborate the
detailed requirements in the next section, always keeping in mind related work in the
area and the approaches taken there.

3 Functional Requirements

As outlined in the introduction there are already many existing ontology editors and
storage environments, however we believe that the extension and modification needs of
them exceed the benefits of reuse. In this section we will outline the specific require-
ments on the Editor.

The main functionality from an Editor is to provide the means to create, modify
and delete every modelling element of the domain of discourse according to a specific
formal meta-model as well as store and retrieve those descriptions. Hence its function-
ality is heavily depending on the underlying formalism. A WSMO Editor consequently
needs to handle Ontologies, Goals, Mediators and Web Services. For Goals, Mediators
and Web Service capabilities it is required to edit complex logical formulas, whereas
for ontologies it should be in principle possible to reuse existing work in the area of
ontology editors.

We are first outlining for each element of WSMO the specific needs raising from
the Meta Model and then discuss more general requirements of such an environment.

3.1 Ontologies

Most implementation work in this area is motivated by having a particular meta-model
or development methodology in mind. Recent efforts are mainly based on the OWL re-
spectively Description Logic primitives, as such have become increasingly important in
the course of its standardization [2]. The resulting editors, such as SWOOP [12] or the



3

DL-Workbench [13] use a very specialized meta model, able to express concepts, prop-
erties and individuals, however the ability to edit axioms is limited by the underlying
description logic expressions and thus very specialized and not as general as WSMO
requires. More general approaches that have been e.g. taken by Protéǵe are based on
OKBC [5] and by intention have very limited support for axioms. [16]. We now briefly
discuss all modelling elements for ontologies and the requirements how they should be
handled.

Global Issues WSMO is based on the principle of URIs (Uniform Resource Identi-
fiers). Furthermore it supports Literals and basic XML Schema Data Types. In addition
WSMO foresees an extensible set of non functional properties for every modelling ele-
ment. This is different to existing approaches such as OWL [2] where only the top level
component (Ontology) has a more extensive set of meta data and the sub elements such
as concepts and properties only have a limited set (e.g. label or comment). One could
argue that the set within other languages is extensible, however the current tool support
does not encourage this and this that feature is not used.

Concepts This element can be handled very similar to how it is done in existing ap-
proaches, however a small difference is the treatment of attributes. Generally they are
treated as first class citizens of the ontology and not of an concept (although it can be
emulated by range restrictions).

Relations Relations are not restricted in its arity like for example in OWL which only
allows binary relations. The WSMO Studio needs to be able to define relation signatures
with named and typed parameters as well as their axiomatization (see section axioms
below), whereas current tools only support binary relations with primitive range and
domain restrictions.

Functions As relations also functions have named and typed parameters and in addi-
tion a range restriction which defines its return value. Like the general notion of n-ary
relation and its axiomatization is not present in most of the discussed existing work on
editors.

Instances The general notion of instances is present in most existing tools, however
it refers usually only to the notion of instances defined in the syntactical framework,
their acquisition and verification. In WSMO this notion is kept much broader and it
foresees the notion of an external instance store and enables the connection to e.g. a
relational database. Thus the studio needs to provide a way to define instances within
the given framework, but also to enable a plug-in architecture that allows the connection
to external sources.

Axiom Axioms are one of the most challenging parts for this editing environment.
Generally a User Interface should hide the complexity of the underlying syntax, how-
ever in the case of axioms and their editing it is difficult to simplify them by using



4

concepts like drop down boxes and wizards and to remain the flexibility to define full
complex logical-expressions according to the specific formalism. This also shows the
comparison with existing tools, e.g. the frame based meta model of Protèg̀e allows only
the definition of a restricted number of logical assertions (e.g cardinality restrictions
are possible but quantifications are not possible). The current work in WSMO foresees
different formalisms for logical-expression, it can be full first order logic or limited to
specific Description Logic or Horn Logic subset. Thus the Studio must have the ability
to edit axioms and to allow different extensions of this editing feature according to the
expressivity of a certain language subset. It should support syntax highlighting, valida-
tion and completion and it may support UI abstractions form the underlying formalism
by Wizards or the like.

3.2 Mediators

Mediators are a novel feature of WSMO, differentiating it form most other approaches
that ignore heterogeneity for the sake of simplicity, but therefore ignoring real world
settings.

OO-Mediators Ontology Mediators can be used to overcome the mismatches in dif-
ferent ontologies and increase the reuse of existing ontologies. A WSMO Studio must
be able to define Mediators according to the already specified elements. It must be
able to handle the simplest type of an OO-Mediator which enables the complete import
of another ontology without the need of mediation, such that for example during the
creation of an logical expression for a goal, the terminology specified by the import
statement is available. The studio should be able to offer extension points for (semi-)
automatic merging or alignment. It should also provide means to dynamically execute
more complex mediators, such as the syntax translation or basic mapping rules, such
that the mediated ontologies become available to the user of the WSMO Studio.

WW, GG, WG-Mediators These Mediator have been currently defined by source and
target component and the mediation service which performs the actual Mediation task.
Currently these Mediators have not been fully specified and not been illustrated in an
use case, they are one of the less well defined elements of WSMO. The WSMO Studio
must expect some changes in their definition and usage and allow to plug-in different
components.

3.3 Goals

The main elements of goals are post-conditions and effects. These are defined by logical
expressions. Currently those expressions are not restricted, but it can be foreseen that
their might be different levels of expressivity, as in general already mentioned for ax-
ioms (see section3.1). Furthermore structural restrictions might be enforced in certain
dialects of WSML, for example that a goal post-condition has to be fact or the capa-
bility has to be a rule. Thus the Studio must provide a basic way to allow unrestricted
use of logical-expressions within the goal, it must provide extension points to allow
customized editing of that properties.



5

3.4 Web Services

In WSMO the web service functionality is described by means of its capability; for the
fields pre-conditions, assumptions, post-conditions logical expression have to be edited.
Here the same requirements then outlined in the previous sections on Goals hold.

Interfaces An interface describes how the functionality of the service can be accessed
by providing a twofold view on the operational competence of the service: The chore-
ography that decomposes a capability in terms of interaction with the service (service
user’s view) and the orchestration decomposes a capability in terms of functionality re-
quired from other services (other service providers’ view). Both elements are currently
not fully specified, however we can make some basic assumptions on the requirements
by considering the current technologies in those areas.

The interface enables a requester to invoke the service, generally the formalism used
for its description are called Interface Definition Languages (IDL). In the area of Web
Services the relevant standard is the Web Service Description Language (WSDL) [6].
However an interface contains further aspects besides the one contained in WSDL such
as information about the behavior (and interrelation) of operations, which can be speci-
fied by e.g. an abstract state machine (ASM) [3]. We can identify as requirement that a
WSMO Studio must be able to handle Interface Descriptions in WSDL, it must be able
to extract the relevant information and present them to the user for further annotation,
i.e. to map the data types to the terminology defined in the ontology and to add some
behaviorally description.

Another part of the interface is the orchestration (also called private process). It
defines how external services are called when performing a specific task. At the mo-
ment the concrete description elements are not defined in WSMO. Thus any workflow
language could be used as proprietary solution to the problem.

3.5 Management

This section describes the requirement on the management of all the descriptions. This
is orthogonal to the already mentioned top level concepts. Every Modelling or Devel-
opment Environment has to deal with them.

Compatibility with existing Formalisms has to be provided if the tool shall be
adopted and to enable the reuse of ontologies conforming to recent web standards like
RDF or OWL. For this purpose importers and exporters are needed. Since the WSMO
model is a proper superset of those standards during the import information can be
preserved, whereas with the export to some of the language information may be lost.
Besides for ontologies compatibility is also important for other areas like orchestration,
where a translation to existing formalisms can be used to immediately use a description
in a use case environment.



6

Inference and Validation With respect to the integration of reasoners into editing
environments, there exist some interfaces, which allow basic communication between
reasoners and an editing environment, the adapter layer needs to be open to enable their
integration. More over the drawn inferences have to be displayed with the graphical
user interface and translated to the more abstract representation form of editor, e.g. if
an inconsistency can be inferred it should be marked within the tree view of the ontology
which concept definition causes the inconsistency. Besides syntactical validation these
inferences can be used for semantical validation.

Collaboration and Versioning is another aspect. In order to be able to work in a
team on a description they need to be accessible in a shared repository, furthermore
versioning support is needed to retrieve different revisions of a description and trace
changes of different authors. In Software Development this is solved for example by
tools like CVS1. It provides a centralized access to all sources, allows the retrieval of
all revisions and concurrent development. Due to the lack of a special tailored system
for ontologies, CVS is currently also used in ontology projects, e.g. WonderWeb2. We
foresee the use of some management layer enabling collaboration and versioning, but
will not focus on this in the beginning.

Storage and Retrieval The WSMO Studio has to support an extensible Storage and
Retrieval functionality. Files in different WSML syntaxes need to be loaded and saved,
as well as the possibility to connect to database back-end storage systems.

3.6 General Software Architecture Requirements

Usability. The Interface should be usable for experts as well as for novice users. That
means employing a similar strategies like for example HTML Editors, that provide
a WYSIWYG interface, but concurrently allow the modification of the source code
as well. In section4 and 5 we give more details on how this kind of usability can
be achieved, although a full usability optimization is beyond the scope and requires
external experts.

ExtensibilityA purely monolithic approach is not feasible, because of the complex-
ity of WSMO and because of the different demands of the potential users. A component
model is needed that allows extensions by a third party, e.g. an connector/monitor tool
for an execution environment or an plug-in modifying the logical expression field edit-
ing. A WSMO Studio can for example be extended to a generic ontology tool and be
reused within other projects.

4 Architecture

After we have outlined the concrete requirements we will now propose an Architecture
that fits all mentioned requirements.

1 https://www.cvshome.org/
2 http://wonderweb.semanticweb.org/

https://www.cvshome.org/�
http://wonderweb.semanticweb.org/�


7

In the field of Ontology Engineering Environments one can distinguish the archi-
tectures into two broad categories, one where the editing is build around a centralized
repository and its core API (client-server) and a second where the editing is based on
a stand-alone client, that provides its own API for different plug-ins [15]. E.g. We-
bOde [1], KAON [4], Ontolingua [10] have a client-server model. The integration of
new modules is based around the API of the server and the reasoning support is directly
handled by the repository. Protéǵe [8], OntoEdit [21] and others take the plug-in ap-
proach without requiring a centralized server (although it might be integrated by a back
end plug-in). Their extensibility is based around the internal API wrapping their data
model.

We believe that the second approach is the best choice for the current stage of the
WSMO development since it does not require the development of a server infrastructure
and allows to concentrate on the implementation of the syntax support for WSML and
importers / exporters. While at the same time allowing a later extension with a more
sophisticated back end (e.g. a ontology management server enabling collaborative on-
tology development).

Based on our experience and the analyzes of success criteria for ontology engineer-
ing environments we believe a component model for the WSMO Studio is a crucial re-
quirement to allow extensions by different stake holders and adaption to specific needs.
Furthermore a studio environment needs to provide basic support and abstraction from
the underlying meta model via an API, as well as interoperability with existing stan-
dards. Based on that the architecture depicted in Figure 1 is envisioned.

The central element of our architecture is an API providing standardized access to
all modelling elements of WSMO as outlined in section3. The API will provide access
to all components defined in [19].

The API will provide an adapter layer for different implementations of import /
export plug-ins. This layer can convert the internal model to different representation
forms, for example to the WSML user language or to an F-logic dialect that can be
interpreted by an existing reasoners.

Besides plug-in for the storage also an extensible component model is needed for
the graphical user interface. For this purpose we use the Eclipse platform (see section5)
and develop a WSMO runtime component for it which integrates the operations of the
WSMO API into the platform, e.g. provides methods to retrieve all loaded ontologies
and bind these to concepts of the component model so it can be accessed. The WSMO
runtime defines the extension points where different plug-ins can be fitted that use the
functionality provided by the already described core components.

By separating the API from the component platform we enable reuse of it also
in applications that do not need or want to use a graphical component platform, for
example a web based validation servlet.

5 Implementation

To implement the proposed architecture existing programming and ontology tools are
available. Because most of these tools are Java based, Java is an appropriate implemen-
tation language for a WSMO Studio. For WSMO ontologies it should at least provide



8

�����
����
���	
��	�

���� �����

���� ���

����
���� !"#��� !

��$%�&
����

���� !"#��� !
��$%�&

#�! # &'�
� �% '�

���� !"#��� !
��$%�&

()
*+

,-.
./
-0
12.
-

345
678()

*+

972
5:4
;<7=
0-

345
678

>?@ABCD E@FGHIJK

()
*+
,.L
=;
<7=0
-

345
678

���� MNOPQRS TUVWPXS

Fig. 1.Architecture of WSMO Studio

a text editor, a tree browser, a basic visual browser and extension points for integrat-
ing other plug-ins especially for logical-expressions or ontologies. The Eclipse plat-
form [11] supports the development of a plug-in architecture with custom extension
points and provides libraries to implement powerful text editors and browsers. There-
fore the Eclipse Platform is an ideal platform for developing an extendable WSMO
Studio. The main components of such a WSMO Studio have been shown in Fig.1.

5.1 Eclipse based WSMO Editor

The Eclipse Platform is especially designed for building integrated development envi-
ronments. The Platform’s principal role is to provide tool providers with mechanisms
and rules that lead to seamlessly-integrated tools. There are already some ontology
tools available for Eclipse such as the Semantic Web Development Environment3 or
the ’Prot̀eg̀e within Eclipse’ plug-in4 which demonstrate how ontology editors can be
implemented based on Eclipse. An Eclipse based WSMO Studio for editing WSMO
descriptions needs at least a runtime plug-in which defines extension points for Eclipse
WSMO Plug-ins and special WSMO Plug-ins.

The main functionality of the WSMO Eclipse Runtime is to define extension points
for WSMO Eclipse Plug-ins and to link between the WSMO API and the Eclipse plat-
form features. Eclipse also enables the definition of extension points for plug-ins to

3 http://owl-eclipse.projects.semwebcentral.org/
4 http://informatics.mayo.edu/

http://owl-eclipse.projects.semwebcentral.org/�
http://informatics.mayo.edu/�


9

allow inter-module (resp. plug-in) communication. Although we implement a runtime
module, other application should also have the possibility to directly plug onto the API
not using the runtime.

One of the most important plug-ins for all development environments and there-
fore also for a WSMO Studio is a text editor for the different variants and syntaxes
of WSML [17]. By using the facilities provided on the Eclipse platform a customized
WSML text editor with additional features such as syntax highlighting, context and
pulldown menus, key binding contexts, text outlining pages that show the hierarchical
structure of the text and context behaviour can be implemented only by extending and
adapting existing classes of the Eclipse library. A prototype of such an Eclipse based
text editor with syntax highlighting has already been implemented (see fig.2). If one

Fig. 2. WSML text editor

wants to extend the text editor with different kinds of logical expressions, different
grammars for logical expressions like FOL or F-Logic can be plugged in. Other useful
plug-ins for editing WSML are a tree browser and a visual editor.

By using a tree browser one can get a well structured overview and navigate through
a WSMO description. In Eclipse tree browsers can easily be implemented by extend-
ing existing tree view classes. A visual editor is a optional plug-in that supports the
visual modelling of WSMO ontologies. Extensions of a basic visual editor may also
include objects for web services, goals and mediators. One should have the possibility
to edit all properties of WSMO descriptions in the visual editor. The editor is especially
for those users who don’t want to code WSMO descriptions in a text editor. Besides
SWT and the JFace library also the Eclipse workbench itself provides many features
for implementing such a editor.

5.2 WSMO API and adapters

The WSMO API is the core part of a WSMO Studio and also reusable for other WSMO
based implementations. The API abstracts from the representation of WSMO data



10

model and provides convenience methods. Within the SWWS Studio5 such an API has
already been developed, which will be reused and extended.

A WSMO Studio needs different import and export plug-ins to serialize WSMO
ontologies into different formats. Because of the existence of many different ontology
formats, it makes sense to implement an abstract adaption layer to build importers and
exporters for special formats based on that layer. WSMO needs at least an import and
an export plug-in for WSML - the standard representation of WSMO. Here work has
already been done, by implementing a grammar and a SableCC based tree walker. Parts
of that work are also used in the online WSML validator6.

6 Conclusions and future work

In this paper we have outlined the requirements on a WSMO Studio and derived an
software architecture for it while continuously comparing our approach to existing so-
lutions. Despite our aim of maximum reuse of existing work we had to conclude that
a construction up on existing ontology editors does not pay off, mainly because of the
different meta model and the missing extensions points for web service related features
such as orchestration development. On the other hand a monolithic and proprietary so-
lution will not be adopted by a wide range of user, because of the lack of extension and
modification possibilities. Our presented architecture takes this into account and pro-
poses an open plug-in model based on a generic component platform such as eclipse.
The first implementation steps have been taken in the form of prototyping with the
eclipse platform and the development of parsers and converters for WSML and flora2.
This work will be jointly continued with the developers of the SWWS Studio.

The WSMO Studio will provide a easy extension point for all researchers aim-
ing at the realization of their research around semantically enabled web services using
WSMO.

Acknowledgments This research is partially funded by the by the European Commis-
sion under the IST projects SWWS and DIP. We like to thank the WSMO, WSMX and
WSML working group for fruitful input and also special thanks to OntoText for their
support and discussions on the design of the studio.

References

1. J. C. Arṕırez, O. Corcho, M. Ferńandez-Ĺopez, and A. Ǵomez-Ṕerez. Webode: a scalable
workbench for ontological engineering. InProceedings of the International Conference on
Knowledge Capture, pages 6–13. ACM Press, 2001.

2. S. Bechhofer, F. v. Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. F. Patel-Schneider,
and L. A. Stein. Web ontology language reference. W3c recommendation, W3C, 2004.

3. E. Börger and R. F. Stärk.Abstract State Machines—A Method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

5 http://swws.ontotext.com
6 http://138.232.65.151:8080/wsml/

http://swws.ontotext.com�
http://138.232.65.151:8080/wsml/�


11

4. E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik, D. Oberle, C. Schmitz,
S. Staab, L. Stojanovic, N. Stojanovic, R. Studer, G. Stumme, Y. Sure, J. Tane, R. Volz,
and V. Zacharias. KAON - towards a large scale Semantic Web. In K. Bauknecht, A. M.
Tjoa, and G. Quirchmayr, editors,E-Commerce and Web Technologies, Third International
Conference, EC-Web 2002, Aix-en-Provence, France, September 2-6, 2002, Proceedings.
Springer, 2002. None.

5. V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. P. Rice. Okbc: A programmatic
foundation for knowledge base interoperability. InProceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98), pages 600–607, Madison, Wisconsin, USA,
1998. MIT Press.

6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL: Web ser-
vices definition language. W3C Technical Reports on WSDL, published online at
http://www.w3.org/TR/wsdl/, 2004.

7. M. Dimitrov, Z. Marinova, and P. Radkov. Prototype Tools II (EU
Project IST-2002-37134 deliverable D5.2). Ontotext Lab. / SIRMA,
http://swws.semanticweb.org/publicdoc/D5.2.pdf, 2004.

8. J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F.
Noy, and S. W. Tu. The evolution of protege: An environment for knowledge-based systems
development. Technical Report SMI-2002-0943, Stanford Medical Informatics, 2002.

9. A. Gómez-Ṕerez et al. A survey on ontology tools. Deliverable 1.3, OntoWeb project
(http://www.ontoweb.org/), 2002.

10. T. R. Gruber. Ontolingua: A mechanism to support portable ontologies, 1992.
11. O. T. International. Eclipse platform: Technical overview. Technical report, Object Technol-

ogy International.
12. A. Kalyanpur. SWOOP (Semantic Web Ontology Overview and Perusal). MindSwap,

Maryland Information and Network Dynamics Lab Semantic Web Agents Project,
http://www.mindswap.org/people/, v2.1 edition, 2004.

13. M. Kazakov. DL-workbench - A meta-model based platform for ontology manipulation.
Open CASCADE S.A, http://projects.opencascade.org/dl-workbench/, v0.9 edition, 2004.

14. H. Lausen and M. Felderer. D9v0.1 WSMO Editor. http://www.wsmo.org/2004/d9/v0.1/,
2004.

15. R. Mizoguchi. Ontology engineering environments. Technical report, The Institute of Sci-
entific and Industrial Research, Osaka University, 2002.

16. N. F. Noy, R. W. Fergerson, and M. A. Musen. The knowledge model of protéǵe-2000:
Combining interoperability and flexibility. InProceedings of the 12th European Workshop
on Knowledge Acquisition, Modeling and Management, pages 17–32. Springer-Verlag, 2000.

17. E. Oren. D16.0v0.2. languages for wsmo. http://www.wsmo.org/2004/d16/v0.2/, 2004.
18. D. Roman and H. L. (Eds). D2v1.0. web service modeling ontology (wsmo).

http://www.wsmo.org/2004/d2/v1.0/, 2004.
19. D. Roman, L. Vasiliu, C. Bussler, and M. Stollberg. Choreography in wsmo.

http://www.wsmo.org/2004/d14/v0.1/, Apr. 2004. WSMO working draft.
20. M. Sintek. The flora query tab. http://www.dfki.uni-kl.de/ sintek/FloraTab/, 2001.
21. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. STuder, and D. Wenke. Ontoedit: Collaborative

ontology development for the semantic web. InInternational Semantic Web Conference -
ISWC 2002, volume 2342, pages 221–235. Springer Verlag, 2002.


