DPLFW: a Framework for the
Product-Line-Based Generation of
Variable Content Documents

Abel Gémez', Pau Marti?, M. Carmen Penadés?, and José H. Canés?

! AtlanMod team (Inria, Mines Nantes, LINA)
4 rue Alfred Kastler. 44307 Nantes, France
abel.gomez-llana@inria.fr
2 ISSI — DSIC, Universitat Politécnica de Valéncia.
Cno. de Vera, s/n. 46022 Valencia. Spain.
{pmarti,mpenades|,|jhcanos}@dsic.upv.es

Abstract. Document Product Lines (DPL) is a document engineering
methodology that applies product-line engineering principles to the gen-
eration of documents in high variability contexts and with high reuse of
components. Instead of standalone documents, DPL promotes the defi-
nition of families of documents where the members share some common
content while differ in other parts. The key for the definition is the avail-
ability of a collection of content assets which can be parameterized and
instantiated at document generation time.

In this demonstration, we show the features of the DPL framework
(DPLFw), the tool that supports DPL. DPLFw implements the domain
engineering and application engineering stages of typical product line
engineering approaches, supports different asset repositories, and gener-
ates customized documents in different output formats. We use the case
study of the generation of customized emergency plans in a University
campus |[http://youtu.be/ueKGfmfkyIO|.

1 Motivation

The concept of document has changed in last decades from the classical printed
artifact to a purposeful and self-contained collection of information in a technolo-
gy-neutral way [1]. In more and more domains, documents are the central pieces
of the business processes; moreover, in most cases the generation of customized
documents has become the final milestone. Examples are customized emergency
plans for organizations, customized learning objects based on students’ profiles,
or customized book catalogs made according to customers’ preferences.
Customization can be made in three dimensions, namely content, structure
and presentation. Specifically, content customization has been tackled from two
different perspectives. On the one hand, proposals on Variable Data Printing
(VDP) use variables within documents that are used as placeholders for con-
tent that are replaced with values to generate customized documents. These
approaches are mostly XML-based [5}8,/10]: document components are defined

mailto:abel.gomez-llana@inria.fr
mailto:pmarti@dsic.upv.es
mailto:mpenades@dsic.upv.es
mailto:jhcanos@dsic.upv.es
http://youtu.be/ueKGfmfkyI0

in XML, and the customized document is generated using XSLT, XPath, and
other related technologies. In these proposals, the variability model is implicit
(that is, it is embedded in XML, XPath and XSLT expressions), forcing docu-
ment engineers to have a high knowledge about the XML world. On the other
hand, more recent proposals such as |49] use a product line approach to model
the variability explicitly. These proposals use feature models to identify the vari-
ability points from a domain-oriented perspective, hiding the XML complexity.

The Document Product Lines approach (DPL) [2|7] is an example of the
latter. DPL was created with a twofold goal: first, to make variable content
documents creation affordable to non-expert users by including a domain engi-
neering process previous to document generation; and second, to enforce content
reuse at domain level following principles of Software Product Line Engineering
(SPLE). We implemented a tool, DPLFw [3], to provide the methodological and
technological background to creating variable content documents by the DPL
approach. DPLFW implements a true product line engineering process where
the content variability is represented using document feature models and differ-
ent variants of the document may be generated by defining different document
configurations. DPLFw was developed following the MDE and Model Driven
Architecture (MDA) paradigms, which allowed us to take advantage of code
generation techniques for the implementation of the tool prototype.

2 The Document Product Lines methodology

DPL is a method for the generation of variable content documents. As in SPLE,
the DPL process is the concatenation of two main subprocesses, namely Domain
Engineering and Application Engineering. Fig. [I] shows the most relevant tasks
and artifacts in each subprocess using the BPMN notation.

The goal of the Domain Engineering is to define a family of documents and
related artifacts. A family is a set of documents that share some mandatory
content while differ in other optional content. To enforce reuse, the content of a

Fig. 1. DPL-based Document Generation Process

family of documents is structured via a document feature model. In the Analyse
Document Family task, a domain engineer specifies the documents in terms of
features and feature attributes. The result is a document feature model including
mandatory, optional, alternative features and their corresponding attributes (if
applicable). In the Design Document Family task, the generic document archi-
tecture is defined by identifying the document components (called core assets
in the SPLE terminology and InfoElements in DPL) required according to the
feature model built in the previous stage. These InfoElements may define a set of
variables corresponding to a set of placeholders, i.e., parts of their content that
may be instantiated at later stages of the document generation process. Specific
instances of the architecture are created later in the process, after the variabil-
ity points and document variable have been fixed for a specific document. DPL
assumes the existence of a Repository where InfoElements are stored and orga-
nized for reuse. Metadata are attached to each InfoElement in order to support
retrieval processes in the Develop Core Asset task to find existing components.
Finally, in the Generate Document Line task, a production plan is obtained; it
is a process that specifies how the components are integrated according to the
different relationships defined between the document features.

In the Application Engineering subprocess, a member of the document fam-
ily is generated. The process starts with the Characterize Document task by
selecting in the configuration the specific document features and variable values
to be included in the final document. Next, the core-assets associated to the
selected document features are retrieved and put together to Generate a Doc-
ument Creation’s Workflow model that it is used to generate a set of Custom
Document Editors. The editors provide guidance for Enacting the Document’s
Creation Workflow by giving both a task-oriented and user-centered view of the
document based on editing task and permissions producing the final document.

3 The DPLfw Framework

Figure[2|describes how a (simplified) DPL process is carried out in DPLFw. The
Domain Engineering stage is an iterative process. For the sake of simplicity no
specific order is enforced to execute its tasks as far as there is a fully populated

DPLrFw
Domain Engineering Application Engineering
__ Domain . Document
) Engineer [Engineer
[(
Document Feature =
component definition
definition
Document
- —_— l characterization
] —
Component = | T\ ET (= =
Editor — = ——
~ — |I=|| — — =
Feature = —_
Document N 4 Editor P~y R
Component Qt__,/ o« Configuration Document Final
with variable data @ editor Custom Generator Document
- Candidate Document
Repository InfoElements Editors

Fig. 2. DPLFw overview

document feature model describing the domain at the end of the stage. The
Feature Editor is used by the Domain Engineer to characterize the variability
of the domain as a document feature model. The Feature Editor interfaces with
the Repository, which contains the InfoElements that will later be reused. All
these elements support the Analyse Document Family task (cf. Figure [1)).

It is noteworthy that, for the sake of simplicity, the Reference Architecture
matches the structure of the feature model, and thus, the Design Document
Family task does not require user-interaction. The Component Editor supports
the Develop Core Assets task and is used to create new InfoFElements and add
them to the Repository. The Generate Document Line, which will describe how
to retrieve and integrate the different components to obtain the final product, is
also hidden from the user-point of view.

Regarding the Application Engineering subprocess, the Configuration Editor
supports the Characterize Document task through the selection of variability
points. Once a document feature model configuration is defined, the Enact Doc-
ument Creation’s Workflow task starts and the Custom Document Editors are
generated by composing the InfoFElements. These editors are used to fill in any
remaining variable data. Finally, the Document Generator (a DITA-based [6]
document generator engine) integrates the different components to obtain a fully
instantiated document generated in a specific format (printed, hypermedia, etc.).

4 Demonstration: The UPV Campus Emergency Plans

Emergency plans development is the field we selected for our case study. An
emergency plan is a document that contains all the knowledge required to re-
spond to any incident in an organization. Emergency plans development is a
domain that brings together a set of requirements that makes it an interesting
real case study. In our demonstration we will show how a family of emergency
plans is modeled, and how a customized emergency plan is generated. The UPV
Campus is a real case study, and its document feature model represents the
family of emergency plans of the university campus; where each building of the
campus has its own emergency plan obtained as a configuration of the family.

Prior to the adoption of the DPL methodology in the UPV, new emergency
plans were manually created using a text editor (MS Word). Applying DPL to
the development of emergency plans requires that a set of document fragments
(i.e. InfoElements) need to be created to be combined in the final document and
a Document Feature Model describing the family of plans. However, sometimes
an InfoElement needs some small parts to be changed from one emergency plan
to another (e.g. the building name or the specific maps or warning systems,
etc.). This scenario allows us to show how both approaches for document cus-
tomization (variability-based customization and Variable Data Printing) have
been combined in DPL and DPLFw.

5 Conclusions

DPLFW supports the generation of variable content documents in a product-line
style. Such an approach has several advantages. On one hand, a domain-oriented
variability specification helps to hide the complexity intrinsic to document de-
scription languages such as XML. On the other hand, the definition of generic
content components increases the reusability of content significantly. DPLFw
supports the generation of customized documents with high levels of reuse. Its
foundation, DPL, aims at raising the level of abstraction in comparison with pre-
vious approaches, helping domain engineers and document engineers to develop
families of documents without knowledge of the underlying document represen-
tation techniques such as XML, XPath, DITA or DocBook.

We have illustrated the use of DPLFw with an example taken from our
collaboration with the emergency planning team at the Universidad Politécnica
de Valéncia. The DPLFW documentation and prototype are publicly available
for download in [3].

References

1. Glushko, R., McGrath, T.: Document Engineering: Analyzing and Designing Doc-
uments for Business Informatics & Web Services. MIT Press (2005)

2. Gémez, A., Penadés, M.C., Cands, J.H., Borges, M.R., Llavador, M.: A framework
for variable content document generation with multiple actors. Information and
Software Technology 56(9), 1101 — 1121 (2014), special Sections from “Asia-Pacific
Software Engineering Conference (APSEC), 2012” and “Software Product Line
conference (SPLC), 20127

3. ISSI Research Group: DPLFw (2014), http://dpl.dsic.upv.es/, (spanish only)

4. Karol, S., Heinzerling, M., Heidenreich, F., Assmann, U.: Using feature models for
creating families of documents. In: Proceedings of the 10th ACM symposium on
Document engineering. pp. 259-262. ACM, New York, USA (2010)

5. Lumley, J., Gimson, R., Rees, O.: A framework for structure, layout & function in
documents. In: Proceedings of the 2005 ACM symposium on Document engineer-
ing. pp. 32-41. ACM, New York, USA (2005)

6. OASIS: Darwin Information Typing Architecture (DITA) Version 1.2 (Dec 2010),
http://docs.oasis-open.org/dita/vl.2/spec/DITAL1.2-spec.html

7. Penadés, M.C., Cands, J.H., Borges, M.R., Llavador, M.: Document product lines:
variability-driven document generation. In: Proceedings of the 10th ACM sympo-
sium on Document engineering. pp. 203-206. ACM, New York, USA (2010)

8. Piccoli, R.F.B., Chamun, R., Cogo, N.C., de Oliveira, J.a.B.S., Manssour, [.H.: A
novel physics-based interaction model for free document layout. In: Proceedings
of the 11th ACM symposium on Document engineering. pp. 153-162. ACM, New
York, USA (2011)

9. Rabiser, R., Heider, W., Elsner, C., Lehofer, M., Griinbacher, P., Schwanninger,
C.: A flexible approach for generating product-specific documents in product lines.
In: Bosch, J., Lee, J. (eds.) SPLC. Lecture Notes in Computer Science, vol. 6287,
pp. 47-61. Springer (2010)

10. Sellman, R.: VDP templates with theme-driven layer variants. In: Proceedings of
the 2007 ACM symposium on Document engineering. pp. 53-55. ACM, New York,
USA (2007)

http://dpl.dsic.upv.es/
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.html

	DPLFW: a Framework for the Product-Line-Based Generation of Variable Content Documents

