
SparkRDF: Elastic Discreted RDF Graph
Processing Engine With Distributed Memory

Xi Chen, Huajun Chen, Ningyu Zhang, and Songyang Zhang

College of Computer Science, Zhejiang University,
Hangzhou 310027, China

{xichen,huajunsir,zxlzr,syzhang1991}@zju.edu.cn

Abstract. With the explosive growth of semantic data on the Web over
the past years, many large-scale RDF knowledge bases with billions of
facts are generating. This poses significant challenges for the storage and
retrieval of big RDF graphs. In this paper, we introduce the SparkRDF,
an elastic discreted semantic graph processing engine with distributed
memory. To reduce the high I/O and communication costs for distribut-
ed platforms, SparkRDF implements SPARQL query based on Spark, a
novel in-memory distributed computing framework. All the intermediate
results are cached in the distributed memory to accelerate the process
of iterative join. To reduce the search space and memory overhead, S-
parkRDF splits the RDF graph into the multi-layer subgraphs based on
the relations and classes. For SPARQL query optimization, SparkRDF
generates an optimal execution plan for join queries, leading to effective
reduction on the size of intermediate results, the number of joins and
the cost of communication. Our extensive evaluation demonstrates the
efficiency of our system.

Keywords: Big RDF Graph, SPARQL, SPARK, Distributed memory.

1 Introduction

With the development of Semantic technologies and Web 3.0, the amount of
Semantic Web data represented by the Resource Description Framework (RDF)
is increasing rapidly. Traditional RDF systems are mainly facing two challenges.
i)scalability: the ability to process the big RDF data. Most existing RDF systems
are based on single node[4][1], which are easily vulnerable to the growth of the
data size because they usually need to load large indexes into the limited memory.
ii) real-time: the capacity to implement SPARQL query over big RDF graph in
near real time. For highly iterative SPARQL query, existing MapReduce-based
RDF systems suffer from high I/O cost because of iteratively reading and writing
large intermediate results in disk[3].

In this paper, we introduce SparkRDF, an elastic discreted RDF graph pro-
cessing system with distributed memory. It is based on Spark, a in-memory
cluster computing system which is quite suitable for large-scale real-time itera-
tive computing jobs[5]. SparkRDF splits the big RDF graph into MESGs(Multi-
layer Elastic SubGraph) based on relations and classes by creating 5 kinds of

2 Xi Chen et al.

indexes(C,R,CR,RC,CRC) with different grains to cater for diverse triple pat-
terns(TP). These index files on demand are modeled as RDSG(Resilient Discret-
ed SubGraph), a collection of in-memory semantic subgraph objects partitioned
across machines, which can implement SPARQL query by a series of basic opera-
tors. All intermediate results(IR), which are also regarded as the RDSG, remain
in the distributed memory to support further fast joins. Based on the query
model, several corresponding optimization tactics are then presented.

The remaining of this paper is organized as follows. Section 2 introduces
the index data model and iterative query model of SparkRDF. In Section 3,
we present the results of our experiments. Finally, we conclude and discuss the
future work in Section 4.

2 SparkRDF

2.1 Index Data Model: MESG

We create the index model called MESG based on relations and classes, which ex-
tends traditional vertical partitioning solution by connecting class indexes with
predicate indexes, whose goal is to construct a smaller index file for every TP in
the SPARQL query. At the same time, as it is uncertain that the class informa-
tion about the entities can are given in the SPARQL query, the SparkRDF needs
a multi-layer elastic index scheme to meet the query need for different kinds of
TP. Specifically, we first construct the class indexes(C) and relation indexes(R).
Then a set of finer-grained index files(CR,RC,CRC) are created by joining the
two kinds of index files. All the index files are stored in the HDFS.

2.2 RDSG-based Iterative Query Model

For SparkRDF, all the index files and IRs can be modeled as an unified con-
cept called RDSG(Resilient Discreted SubGraph). It is a distributed memory
abstraction that lets us perform in-memory query computations on large clus-
ters by providing the following basic operators: RDSG Gen, RDSG Filter, RDS-
G Prepartition, RDSG Join. Figure 1 illustrates the RDSG-based query process.
Every job corresponds to one query variable.

2.3 Optimization techniques

Based on the data model and query model, several optimization strategies are
made to improve query efficiency. First, TR-SPARQL refers to a Type-Restrictive
SPARQL by passing variable’s implicit class message to corresponding TPs that
contains the variable. It cuts down the number of task (remove the TPs whose
predicate is rdf:type)and the cost of parsing every TP(form a more restrictive
index file). Then we use a selectivity-based greedy algorithm to design a optimal
execution order of TPs, greatly reducing the size of IR. At last, the location-
free prepartitioning is implemented to avoid the shuffling cost in the distributed
join. It ignores the partitioning information of index files, while repartitioning
the data with the same join key to the same node.

SparkRDF: Elastic Discreted RDF Engine With Distributed Memory 3

3 Evaluation

We implement the experiment on a cluster with three machines. Each node has
16 GB DDR3 RAM, 8-core Intel Xeon(R) E5606 CPUs at 2.13GHz. We com-
pare SparkRDF with the state-of-the-art centralized RDF-3X and distributed
HadoopRDF. We run the RDF-3X on one of the nodes. HadoopRDF and S-
parkRDF were executed in the cluster. We use the widely-used LUBM dataset
with the scale of 10000, 20000 and 30000 universities, consisting of 1.3 , 2.7 and
4.1 billion triples. For the LUBM queries, we chose 7 representative queries which
are roughly classified into 2 categories: highly selective queries (Q4,Q5,Q6) and
unselective queries(Q1,Q2,Q3,Q7). A short description on the chosen queries is
provided in the Appendix.

Table 1 summarizes our comparison with HadoopRDF and RDF-3X(best
times are boldfaced). The first observation is that SparkRDF performs much
better than HadoopRDF for all queries. This can be mainly attributed to the
following three characteristics of SparkRDF: finer granularity of index scheme,
optimal query order and effective memory-based joining. Another observation
is that SparkRDF outperformed RDF-3X in Q1,Q2,Q3,Q7, while RDF-3X did
better in Q4,Q5,Q6. The result conforms to our initial conjecture: RDF-3X can
achieve high performance for queries with high selectivity and bound objects or
subjects, while SparkRDF did well for queries with unbound objects or subjects,
low selectivity or large intermediate results joins. Another result is that RDF-3X
fails to answer Q1 and Q3 when the data set size is 4.1 billion triples. On the
contrary, SparkRDF scales linearly and smoothly when the scale of the datasets
increases from 1.3 to 4.1 billion triples. It proves that SparkRDF has a good
scalability.

Index RDSG RDSG RDSG

RDSG_Gen Prepartition RDSG_Filter

TPx
1

Index RDSG RDSG RDSG

RDSG_Gen Prepartition RDSG_Filter

TPx
2

....

TPx
k

IR1

RDSG_Join

IR2

...

IR not shuffled

IRk

RDSG_Join

....

....

....

....

Index RDSG

RDSG_OP

....

TPy
n

....

....

TPy
1

....

Index RDSG

RDSG_OP

TPy
2

....

IRk IRk+1

...

IRk+2

RDSG_Join

IRk+n

RDSG_Join

Index RDSG

RDSG_OP

....

TPz
m

....

....

TPz
1

....

Index RDSG

RDSG_OP

TPz
2

....

...

......

RDSG_Join

Job1 Job2 Job3

Selectivity of Variables
Selectivity o

f TP
s

Fig. 1. The Iterative Query Model of SparkRDF

4 Xi Chen et al.

Table 1. Performance Comparison in seconds for SparkRDF(SRDF), HadoopRD-
F(HRDF) and RDF3X.

LUBM-10000 LUBM-20000 LUBM-30000

cluster systems centralized
system

cluster systems centralized
system

cluster systems centralized
system

SRDF HRDF RDF3X SRDF HRDF RDF3X SRDF HRDF RDF3X

Q1 478.5 8475.4 2131.4 1123.2>3h 4380.3 1435.4>3.5h failed

Q2 11.9 3425.2 13.8 25.8 >2h 28.9 40.3 >2.5h 43.5

Q3 1.4 6869.7 24.6 1.4 >2.5h 90.7 1.4 >3h failed

Q4 14.4 11940.3 0.7 23.8 >4h 0.8 32.5 >8h 0.8

Q5 6.8 2587.5 0.7 10.9 >1h 0.7 13.0 >3h 0.7

Q6 10.3 7210.5 0.6 16.4 >2.5h 0.7 20.0 >3h 0.7

Q7 54.6 1911.2 101.5 112.5 >0.7h 198.5 201.3 >1h 853.0

4 Conclusion and Future Work

In the paper, we introduce the SparkRDF, a real-time scalable big RDF graph
processing engine. Also We give some the experimental results to show effective-
ness of the SparkRDF. In the future, we would like to extend the work in few
directions. First, we will handle more complex SPARQL patterns(such as OP-
TIONAL). Finally, we will make a more complete and comprehensive experiment
to validate the efficiency of SparkRDF.

References

1. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix Bit loaded: a scalable
lightweight join query processor for rdf data. In: Proceedings of the 19th inter-
national conference on World wide web. pp. 41–50. ACM (2010)

2. Guo, Y., Pan, Z.: LUBM: A benchmark for owl knowledge base systems. Web Se-
mantics: Science, Services and Agents on the World Wide Web 3(2), 158–182 (2005)

3. Husain, M., McGlothlin, J., Masud, M.M., Khan, L., Thuraisingham, B.: Heuristics-
based query processing for large rdf graphs using cloud computing. Knowledge and
Data Engineering, IEEE Transactions on 23(9), 1312–1327 (2011)

4. Neumann, T., Weikum, G.: The rdf-3x engine for scalable management of rdf data.
The VLDB Journal 19(1), 91–113 (2010)

5. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation. pp. 2–2 (2012)

APPENDIX

We provide the SPARQL queries used in the experimental section:
Q1-Q6 are the same as [1]. Q7 corresponds to the Q14 of [2].

	SparkRDF: Elastic Discreted RDF Graph Processing Engine With Distributed Memory

