
Interaction Components Between Components
based on a Middleware

Văn Cam Pha.m, Önder Gürcan, Ansgar Radermacher

CEA, LIST, Laboratory of Model driven engineering for embedded systems,
Point Courrier 174, Gif-sur-Yvette, F-91191 France

name.surname@cea.fr

Abstract. One of the problems of systems based on distributed archi-
tectures is the communication between applications running on different
platforms on a network. The appearance of middleware reduces the com-
plexity in transferring data between heterogeneous platforms of such sys-
tems. Up until now, various middleware have been proposed to facilitate
the distributed system construction. In the context of component-based
development, connectors represent links that realize the communication
between application components. However, from the modeling perspec-
tive, the transition from the behavior of connectors to middleware im-
plementation is still not clear.
This paper reports how to model the interaction components that de-
fine the behavior of connectors by using the ZeroMQ middleware due
to several advantages it offers such as effective asynchronous commu-
nication patterns. In order to test our approach, we designed and im-
plemented several different examples. Based on these examples, we ob-
served that implementing interaction components between components
based on a middleware simplifies the connection between components in
a distributed system.

1 Introduction

A distributed system consists of multiple different application components that
connect together to exchange data. These components usually run on hetero-
geneous platforms and thus have to handle platform differences such as byte-
order. In model-driven approaches, this problem is often tackled by abstracting
the communication logic from its implementation. In the UML specification,
connectors illustrate such abstract communication links between the application
components. However, the UML specification does not define the behavior of
connectors. Therefore, an additional refinement is required on the model level.

On the implementation level, it is possible to integrate the connection code
into application components directly. In other words, the connection code is
integrated into the application components. Nevertheless, the management of
application components becomes more difficult as their number increases and
the embedded connection code cannot be reused. It is therefore necessary to

separate interaction components1 from application components; hence develop-
ers can focus on application components without taking the communication into
account.

In case of heterogeneous platforms, the implementation of connections needs
to take several issues into account, notably different conventions for the ordering
of bytes within a word2. In addition, it is also difficult to directly manage com-
plicated connections from the application using socket connections since many
sockets need to be created. Middleware is a way to overcome such difficulties
since it offers a higher level of abstraction and does not depend on the underly-
ing operating system.

The presented paper is based on previous work in this area, notably the
support of connectors [9] for the UML profile MARTE and the support of simple
socket interactions in [10]. The Qompass designer tool chain has been developed
in the context of this work. It is a code generation and deployment extension of
the UML modeler Papyrus3. The novelties of this paper are (1) the presentation
of an additional interaction component based on the ZeroMQ middleware and
(2) the support of asynchronous requests with return values (also called deferred
synchronous calls).

The remaining of this paper is organized as follows. Section 2 outlines the
methods and tools. Section 3 presents the modeling of ZeroMQ interaction com-
ponents. Section 4 shows examples to test our implementation. Section 5 gives
the related work and Section 6 concludes the paper.

2 Background

In this section, we introduce the method and tools used for our study, in particu-
lar Qompass Designer. It is used to transform models and deploy an application.
Besides a model of the application software, the input model consists of a library
of interaction components (and container services), a platform description and a
deployment description that declares, configures and allocates instances. In the
context of this paper, we only focus on application and interaction components.
The component model is enriched by means of the Flex-eware Component Model
(FCM) profile. It provides (among other extensions) a means to enrich ports of
components. An FCM port has an additional port kind (extensible) that denotes
whether the port is for instance a client/server, data-flow or event port. From an
implementation perspective, the port kind determines the required and provided
interfaces of this port.

There are basically two main steps for using interaction components4 (1)
transforming the UML application model into an intermediate model, and (2)
1 As a common terminology, components that implement a UML connector are called

interaction components.
2 Orderding of bytes, http://www.gnu.org/software/libc/manual/html_node/Byte-
Order.html, accessed on 07/07/2014.

3 Papyrus, http://www.eclipse.org/papyrus/, accessed on 17/07/2014.
4 It is basically a UML component (class) tagged as interaction component.

generating the implementation code from the intermediate model. The first
transformation step replaces UML connectors with interaction components, as
detailed later (see Fig. 2).

From the perspective of a developer who wants to incorporate new interaction
components, a preliminary step is the modeling of this interaction component.
This is done in form of a stereotyped class. The interaction component has ports
to connect to the ports of application components. To be able to allocate these
ports on different platforms, interaction components are logically decomposed
into several fragments [10] (fragment per node). For example, a uni-directional
communication interaction component has a sending fragment and a receiving
fragment. These logically connected fragments are physically connected by using
programming languages such as C++, Java in the implementation level. In this
work, a new interaction component on top of the ZeroMQ (also known as ZMQ)
middleware is developed5 since we want to apply the AMI callback pattern and
ZeroMQ offers a set of asynchronous socket APIs that transfers messages quickly
and efficiently over the network. These sockets run on top of the standard sockets
of operating systems and carry atomic messages across various transports such
as in-process, inter-process, TCP, and multicast. The modeling of the interaction
component is detailed in the next section.

In this study, we focus on asynchronous method invocation (AMI) callback
communication pattern [11] since it allows clients to achieve high performance.
For example, in a client/server application, a client sends a request to a server.
Instead of blocking and waiting for a reply from the server (as synchronous
calls), it provides callback functions to be invoked in order to process results
received. These callback functions are called once replies are received. In the sense
of component-based development, we use ports dedicated to the AMI callback
pattern that are used by applying the AMI callback element of the FCM profile
(see Fig. 1).

Fig. 1: The AMI port has two interfaces (right), one required and one provided, derived
from a original port interface (left). The provided interface is needed since it contains
callback functions that are invoked through the AMI callback port.

During application deployment, the modeled UML connectors are trans-
formed into interaction components in an intermediate model (Fig. 2) by using
Qompass Designer. The FCM Connector stereotype references the interaction

5 ZeroMQ, http://zeromq.org/, accessed on 18/07/2014.

component that should be used. The transformation adapts the interaction com-
ponent automatically to the application components that are connected, e.g. the
ports of the interaction component need to be compatible with the ports of the
connected application components. The ports of application components then
connect to the ports of the generated interaction components instead of the end
points of the UML connectors.

Fig. 2: Transformation from a system with (a) line of connector to (b) a composite
structure of connector

The implementation code is generated from the intermediate model (a UML2
model with expanded interaction components). The code generator is basically
generating C++ code from the UML model.

3 Interaction components modeling based on ZeroMQ

In this section, we present the decomposition of connectors and how AMI call-
back ports are used for modeling the asynchronous communication pattern. The
AMI ports are dedicated for asynchronous requesting components such as clients
in Client/Server applications.

This interaction component (see Fig. 3) contains fragments that define the
behavior of connectors, provides interfaces to connect to application components
through its ports and are co-located with appropriate application components
on specific nodes of platforms. Interaction components often have two ports to
connect two application components, but the concept is not limited to this case.

ClientFrag_AMICallBack

 + clientImpl_AMICallBack: ClientImpl_...

 pRegister: RegisterDispatcher fconn_ami: ~I

 + sr: AMISocketRuntime [1]

 register: RegisterDispatcher

 fconn_ami: ~I

ServerFrag_AMICallBack

 + serverImpl_AMICallBack: ServerI...

 pRegister: RegisterDispatcher rconn: ~I

 + sr: AMISocketRuntime [1]

 register: RegisterDispatcher

 rconn: ~I

ZMQAMI_InteractionComponent

 + clientFrag_AMICallBack: Clie...

 fconn_ami: ~I

 + serverFrag_AMICallBack: ServerF...

 rconn: ~I

 fconn_ami: ~I rconn: ~I

Fig. 3: Interaction component composite for AMI Callback model

The client fragment (ClientFrag_AMICallback) is asynchronous and the server
fragment (ServerFrag_AMICallback) is synchronous. The interaction component
needs to be reusable in other applications; hence the interfaces of the ports of the
interaction component must match with the interfaces of different application
components. In other words, when the interfaces of a port change, the interaction
component has to adapt with the new interfaces.

To do this, we use an interface I as a formal parameter in a template and the
ports of the interaction component are typed with this template. I is then bound
to a specific interface when it is in use. The template binding defined here is
realized by model to model transformations in Qompass Designer.

The inside of each of these two fragments is divided into two parts to differ-
entiate between dispatching (xImpl) and communication (SocketRuntime) tasks.
For the client and the server, there are ClientImpl and ServerImpl respectively
that dispatch the requests or callbacks to right addresses. SocketRuntime, on the
other hand, permits the dispatching component to register the dispatch interface
(RegisterDispatcher) to the corresponding port (pRegister). RegisterDispatcher is
called when the SocketRuntime receives some data. To realize this mechanism,
SocketRuntime uses a set of ZeroMQ sockets to connect to the application com-
ponents.

When a requesting component (e.g., client) calls a function through the AMI
method invocation, the in/inout parameters of the function are marshalled into
a chain of bytes. These parameters are stored in a buffer of the interaction
component, ClientImpl in particular. These parameters are then passed as the
parameters of the callbacks. This storage is essential to distinguish callbacks
from multiple invocations since different callbacks corresponding to different
input parameters may process results received in different ways. The parameters
marshaling is generated from an Acceleo template. An example of an interface
with two operations (int sum(int a, int b) and int square(int value)) is shown in
Fig. 4. The chain of bytes also includes an operation ID and a handler ID. The
operation ID is used by the server to determine the right processing function and
the hander ID to find again the input parameters saved corresponding to the
right results received. The callbacks therefore execute with its results and input
parameters. The called function returns immediately after saving its parameters.
The requesting component can go ahead without waiting for results. Data are
actually sent and received in background threads. The socket runtime at the
server side receives the request, calls dispatch to de-marshal parameters and then
execute the right function to get the result. The de-marshaling of parameters is
also generated from Acceleo.

The maximum number of input data has to be configured by users. For net-
work applications with high calls number density or high computational time
on servers, this number should be large enough to prevent the data of previous
requests from overwriting. ClientFragment (sender) has a DEALER6 socket of Ze-
roMQ to send requests and a ROUTER socket to asynchronously receive replies

6 See the ZeroMQ web site for more information.

Fig. 4: Transformation from Acceleo to C++ code

from ServerFragment (recipient). The DEALER socket connects to a ROUTER
socket of the recipient. These sockets offer asynchronous data transfers.

4 Examples

In this section, we present two examples to testify our interaction component im-
plementation. The first example is about a client/server application. The second
one is about a simple load balancing application.

4.1 Client/Server application using AMI callback

This system consists of a client and a server. The client is asynchronous and
requests to the server through AMI callback communication with the interface
ICompute as shown in Fig. 5. The interface has two operations: add(in a:Long,
in b:Long):Long and mult(in a:Long, in b:Long):Long. The client needs to initiate
requests. For this need, the FCM provides a simple convention: the client pos-
sesses a port start providing the interface IStart. This interface contains a run
method that is automatically called pending the system start-up. The connector
between the client and the server refers the interaction component implemented.

System

 + cli: Client_App [1]

 q: ICompute
 start: IStart

 + srv: Server_App [1]

 p: ICompute

<<FCM::Connector>>

Fig. 5: Client/Server using AMI Callback example

For the deployment, the system is distributed on two different nodes. The
client is deployed on ClientNode, the server on ServerNode as exposed in Fig. 6.

The fragments of the connector are co-located with the application components.
The model transformed by Qompass Designer is then the input of the code
generation process. This process is realized by using Acceleo7.

System

 + cli: Client_A...

 q: ICompute

 + srv: Server_Ap...

 p: ICompute

 + qp_connector: ZMQInteractionComponentUniDir [1]

 + clientFrag_AMIC... + serverFrag_AMIC...

«Node»

Client Node

«Node»

Server Node

«Allocate»
«Allocate» «Allocate»«Allocate»

Fig. 6: Client/Server AMI callback example deployment

4.2 Interactions between components in the load balancing model

The Client/Server model is widely used because of its simplicity and facility of
implementation. However, the model presents some issues, i.e. it is difficult to
scale since the server must always run or the server can be a bottleneck since it
has to treat all requests. Load balancing model8 has been proposed as a solution
to overcome these issues.

Load balancing is offered by ZeroMQ for distributing workloads of an appli-
cation onto several servers called workers. Workloads distribution is performed
by a broker component. The workers have the computational responsibility. They
expedite the result to the broker.

In this example, there are one client, one broker and one worker (on the
type level). The client needs to implement call back functions. AMI callback
port kind is used. The ZMQAMI_InteractionComponent interaction component
is applied to the connectors between components. The workers act synchronously.
Information about the address and listening ports of the broker is configured.
Clients need to know the front end port number and the broker’s IP address and
workers know about the back end’s.

The application components of the system are allocated onto three nodes,
client node, worker node, broker node. Many instances of client and worker can be
run in different platforms. The broker has to start firstly and listen on the worker
side (back end). When a worker begins, it sends a ready signal to the broker and
the broker sets it as an available worker. The broker only actives on the client
(front end) side if there is one available worker at least. Requests are forwarded
from the broker and arrive to the workers alternatively.
7 Acceleo, http://www.eclipse.org/acceleo/, accessed on 17/07/2014.
8 Load Balanced Cluster, http://msdn.microsoft.com/en-us/library/ff648960.
aspx, accessed on 12/09/2014.

System

 + client: Client [1]

 start: IStart q_ICompute: ICompute

 + worker: Worker [1]

 p_ICompute: ICompute

 + broker: Broker [1]

 p_ICompute: ICompute q_ICompute: ICompute

<<FCM::Connector>> <<FCM::Conenctor>>

Fig. 7: Simple application follows load balancing model

5 Related Work

The concept of interaction components presented in this paper is supported
by multiple component models and tools in other terminologies. The follow-
ing sketches several works that are categorized into AMI callback implementa-
tions, component models supporting interaction components and implementa-
tions based on ZeroMQ.

Arulanthu et al. [1] provide the implementation of AMI callback for CORBA.
Their implementation is in TAO [11]. They use the IDL (interface definition lan-
guage) compiler to generate callbacks from the original interface. However, this
does not resolve asynchronous messaging in MDE. At a higher level of abstrac-
tion, asynchronous messaging has been integrated into the CORBA component
model (CCM), called AMI4CCM [7]. An AMI4CCM connector (analogous to
the interaction component described in this paper) is responsible for managing
the interaction. The connector is part of the extensibility mechanism in CCM,
providing a so-called generic interaction support (GIS). The major difference
between AMI4CCM and the work presented here is to address the concepts di-
rectly at the modeling level and the support for the middleware ZeroMQ. Please
note that Qompass designer is inspired by CCM and supports similar concepts.

The interest for a further standardization of component models with ex-
tensible interaction support is expressed by a request-for-proposal of a Unified
Component Model (UCM) [8] that the Object Management Group (OMG) has
issued recently. In the sequel we reference two older component models with this
ability, before we talk about a different approach to build higher level services
on top of ZeroMQ: ZeroRPC.

SOFA 29 [5, 6, 4] is a component system employing hierarchically composed
components. SOFA connectors are automatically generated. A connector might
support a transport mechanism such as CORBA or low level mechanisms. In
this context, they are responsible for marshaling and de-marshaling. The pro-
posed connector architecture consists of a distributor deployment unit and sev-
eral sender/recipient units. The sender/recipient unit allows sending messages
to attached components. The sender/recipient units connect to the distributor
unit in a similar way. Connector configurations and deployment models are also
shown. However, SOFA 2 does not support UML.

Fractal is a hierarchical and reflective component model [3]. It is intended to
implement, deploy, and manage complex software systems, including in partic-
9 SOFA, http://sofa.ow2.org/, accessed on 15/09/2014.

ular operation systems and middleware. Fractal connectors are Fractal binding
components with behavior [2].A composite binding component is a communica-
tion path between an arbitrary numbers of component interfaces, of arbitrary
language types. These bindings are represented as a set of primitive bindings
and binding components (stubs, skeletons, adapters in the con-text of remote
method calls).

ZeroRPC10 is a light-weight, reliable and modern communication library for
distributed systems. ZeroRPC builds on top of ZeroMQ and MessagePack. Ze-
roRPC is more than a typical Remote Procedure Call (RPC) engine and sup-
ports multiple ZeroMQ socket types, streaming, heartbeat and more. ZeroRPC
is created to satisfy requirements such as exposing arbitrary code with minimal
modification, self-document systems, propagate exceptions, trace nested calls
and provide brokerless, highly available, fast fan-in/fan-out. However, ZeroRPC
focuses on communications between server-side processes and so far is only im-
plemented in Python and Node.js that are not suitable to distributed embedded
applications

6 Conclusion and Future Work

In this paper, we have shown the modeling in UML of the AMI interaction
component that defines the behavior of connectors. We used the stereotypes of
the FCM profile to apply UML connectors and ports for the modeling. A UML
connector applying the Connector stereotype of the FCM profile is transformed
to a composite structure. We used Papyrus to model and Qompass Designer
to transform models. At the physical connection level, we used the ZeroMQ
middleware due to the several advantages it offers.

After the modeling of the interaction component, we tested it with two ex-
amples. One is a simple Client/Server application with asynchronous client and
synchronous server; the other one is a simple load balancing application11. The
separation between interaction and application components simplifies the devel-
opment process of distributed systems. The interaction component can be reused
in other applications. Application components developers can therefore focus on
data processing at application level.

As future work, we will enrich the properties of quality of service for the
interaction components to provide more reliable communications. We will also
further study systems with dynamic adaptation which are currently poorly sup-
ported by our approach.

The work presented in this paper is supported by the European project
SafeAdapt, grant agreement No. 608945, see http://www.SafeAdapt.eu.

10 ZeroRPC, http://zerorpc.dotcloud.com/, accessed on 15/09/2014.
11 We also support publisher/subscriber and producer/consumer patterns, but we are

unable to present them here due to space limitation.

References

[1] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael
Kircher, and Jeff Parsons. The design and performance of a scalable orb
architecture for cobra asynchronous messaging. In IFIP/ACM International
Conference on Distributed Systems Platforms, Middleware ’00, pages 208–
230, Secaucus, NJ, USA, 2000. Springer-Verlag New York, Inc.

[2] Tomás Barros, Rabea Boulifa, Antonio Cansado, Ludovic Henrio, and Eric
Madelaine. Behavioural Models for Distributed Fractal Components. Rap-
port de recherche RR-6491, INRIA, 2008.

[3] E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal Component Model,
February 2004. Version 2.0-3.

[4] Lubomir Bulej and Tomas Bures. Using connectors for deployment of het-
erogeneous applications in the context of omg d&c specification. In Dim-
itri Konstantas, Jean-Paul Bourrières, Michel Léonard, and Nacer Boudjl-
ida, editors, Interoperability of Enterprise Software and Applications, pages
349–360. Springer London, 2006.

[5] Tomas Bures and Frantisek Plasil. Communication style driven connector
configurations. In LNCS3026, ISBN 3-540-21975-7, ISSN 0302-9743, pages
102–116. Springer-Verlag, 2004.

[6] Ondrej Galik and Tomás Bures. Generating connectors for heteroge-
neous deployment. In Elisabetta Di Nitto and Amy L. Murphy, editors,
Proceedings of the 5th International Workshop on Software Engineering
and Middleware, SEM 2005, Lisbon, Portugal, September 5-6, 2005, pages
54–61. ACM, 2005.

[7] Object Management Group. Asynchronous method invocation for ccm.
Specification Version 1.0, Object Management Group, April 2013.

[8] OMG. OMG Unified Component Model for Distributed, Real-Time
and Embedded Systems. Request for proposal, OMG, May 2014.
http://www.omgwiki.org/ucm/doku.php.

[9] Ansgar Radermacher, Arnaud Cuccuru, Sebastien Gerard, and François
Terrier. Generating Execution Infrastructures for Component-oriented
Specifications with a Model Driven Toolchain: A Case Study for MARTE’s
GCM and Real-time Annotations. SIGPLAN Not., 45(2):127–136, October
2009.

[10] Ansgar Radermacher, Önder Gürcan, Arnaud Cuccuru, Sebastien Gerard,
and Brahim Hamid. Split of composite components for distributed ap-
plications. In Torsten Maehne and Marie-Minerve Louërat (eds), editors,
Languages, Design Methods, and Tools for Electronic System Design, chap-
ter 14, pages 255–267. Springer, Septembre 2014. doi:10.1007/978-3-319-
06317-1_14.

[11] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design
of the TAO Real-time Object Request Broker. Computer Communications,
21(4):294–324, April 1998.

