Scalable Dynamic Business Process Discovery
with the Constructs Competition Miner

David Redlich!?, Thomas Molka!*3, Wasif Gilani!, Gordon Blair?, and Awais
Rashid?

! SAP Research Center Belfast, United Kingdom,
[david.redlich|thomas.molka|wasif.gilani]@sap.com
2 Lancaster University, United Kingdom,
[gordon|marash]@comp.lancs.ac.uk
3 University of Manchester, United Kingdom

Abstract. Since the environment for businesses is becoming more com-
petitive by the day, business organizations have to be more adaptive to
environmental changes and are constantly in a process of optimization.
Fundamental parts of these organizations are their business processes.
Discovering and understanding the actual execution flow of the processes
deployed in organizations is an important enabler for the management,
analysis, and optimization of both, the processes and the business. This
has become increasingly difficult since business processes are now often
dynamically changing and may produce hundreds of events per second.
The basis for this paper is the Constructs Competition Miner (CCM): A
divide-and-conquer algorithm which discovers block-structured processes
from event logs possibly consisting of exceptional behaviour. In this pa-
per we propose a set of modifications for the CCM to enable scalable
dynamic business process discovery of a run-time process model from
a stream of events. We describe the different modifications and carry
out an evaluation, investigating the behaviour of the algorithm on event
streams of dynamically changing processes.

Key words: run-time models, business process management, process
mining, complex event processing, event streaming, big data

1 Introduction

The success of modern organizations has become increasingly dependent on the
efficiency and performance of their employed business processes (BPs). These
processes dictate the execution order of singular tasks to achieve certain business
goals and hence represent fundamental parts of most organizations. In the con-
text of business process management, the recent emergence of Big Data yields
new challenges, e.g. more analytical possibilities but also additional run-time
constraints. An important discipline in this area is Process Discovery: It is con-
cerned with deriving process-related information from event logs and, thus, en-
abling the business analyst to extract and understand the actual behaviour of
a business process. Even though they are now increasingly used in commercial
settings, many of the developed process discovery algorithms were designed to
work in a static fashion, e.g. as provided by the ProM framework [15], but are



2 D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid

not easily applicable for processing real-time event streams. Additionally, the
emergence of Big Data results in a new set of challenges for process discovery on
event streams, for instance [11, 16]: (1) diversity of event formats from differ-
ent sources, (2) high event frequency (e.g. thousands of events per second), and
(3) less rigid processes (e.g. BPs found on the operational level of e-Health and
security use-cases are usually subjected to frequent changes).

With the focus on addressing the latter two of these challenges, we propose
in this paper modifications for the Constructs Competition Miner (CCM) [10]
to enable Scalable Dynamic Process Discovery as proposed in [11]. The CCM
is a process discovery algorithm that follows a divide-and-conquer approach to
directly mine a block-structured process model which consists of common BP-
domain constructs and represents the main behaviour of the process. This is
achieved by calculating global relations between activities and letting different
constructs compete with each other for the most suitable solution from top to
bottom using ”soft” constraints and behaviour approximations. The CCM was
designed to deal with noise and not-supported behaviour. To apply the CCM on
event streams the algorithm was split up into two individually operating parts:

1. Run-time footprint calculation, i.e. the current footprint!, which repre-
sents the abstract ”state” of the system, is updated with occurrence of each
event. Since every occurring event constitutes a system state transition, the
algorithmic execution-time needs to be kept to a minimum.

2. Scheduled footprint interpretation, i.e. from the footprint the current
business process is discovered in a scheduled, reoccurring fashion. Since this
part is executed in a different lifecycle it has less execution-time constraints.
In this step the abstract ”computer-centric” footprint is transformed into a
”human-centric” business process representation.

The remainder of this paper provides essential background information (Sec-
tion 2), a discussion of related work (Section 3), a summarized description of the
original CCM (Section 4), the modifications that were carried out on top of the
CCM to enable Scalable Dynamic Process Discovery (Section 5), an evaluation
of the behaviour of the resulting algorithm for event streams of dynamically
changing processes (Section 6), and an outlook of future work (Section 7).

2 Background

Business Processes are an integral part of modern organizations, describing the
set of activities that need to be performed, their order of execution, and the en-
tities that execute them. Prominent BP examples are Order-to-Cash or Procure-
to-Pay. According to Ko et al. BPs are defined as ”...a series or network of value-
added activities, performed by their relevant roles or collaborators, to purposefully
achieve the common business goal” [4]. A BP is usually described by a process
model conforming to a business process standard, e.g. Business Process Model
and Notation (BPMN) [9], or Yet Another Workflow Language (YAWL) [13].
In this paper, we will focus on business processes consisting of a set of common

! footprint is a term used in the process discovery domain, abstractly representing
N a”

existent ”"behaviour” of a log, e.g. activity ”a” is followed by activity ”b”



Scalable Dynamic BP Discovery with the CCM 3

control-flow elements, supported by most of the existing BP standards: start and
end events, activities (i.e. process steps), parallel gateways (AND-Split/Join),
and exclusive gateways (XOR-Split/Join) (see [9, 13]). In Figure 1 an example
process involving all the introduced elements is displayed. Formally, we define a
business process model as follows [10]:

Definition 1 A business process model is a tupel BP = (A,S,J, Es, E.,C)
where A is a finite set of activities, S a finite set of splits, J a finite set of joins,
Es a finite set of start events, E. a finite set of end events, and C C F x F the
path connection relation, with F = AUSUJ U E; U E,, such that
- C:{(Cl,CQ) EFXF|61 #CQ/\C1 ¢Ee/\62 ¢E3},
-VYa€e AUJUE;: [{(a,b) eC |be F}| =1,
-Vae AUSUE, : [{(b,a) e C|be F} =1,
-VaeJ:|{(ba)eC|be F}| >2,
-VaeS:|{(a,b)eC|be F} >2, and
— all elements e € F in the graph (F,C) are on a path from a start event a € Ej
to an end event b € E,.
For a block-structured BP model it is furthermore required that the process
is hierarchically organised [10], i.e. it consists of unique join-split-pairs, each
representing either a single entry or a single exit point of a non-sequential BP
construct, e.g. Choice, Parallel, Loop, etc. The example process in Figure 1 is a
block-structured process. A similar representation gaining popularity in recent
years is the process tree, as defined based on Petri nets/workflow nets in [5].
When a business process is automatically or semi-automatically executed
with a BP execution engine, e.g. with a Business Process Management System
(BPMS), an event log is produced, i.e. a all occurred events are logged and
stored. These logs and their contained events may capture different aspects of a
process execution, e.g. a different granularity of events are logged. In this paper
however, we only focus on a minimal set of event features: In order to allow the
discovery of the control-flow, every event is required to have a reference (1) to the
associated process instance and (2) to the corresponding activity. Furthermore,
we assume that the log contains exactly one event for each activity execution, i.e.
activity lifecycle events are not regarded. All events resulting from the execution
of the same process instance are captured in one trace. A trace is assumed to be
independent from other traces, i.e. the execution order of a process instance is
not in any way dependent on the execution of a second instance. Accordingly,
an event e is represented by a pair e = (¢,a) where ¢ € N is the unique identifier
of the trace and a € A is a unique reference to the executed activity.

AND n AND
Split Join —l Legend

(o - ~ strend
Event Split. Join Event Event Activity
B B O
Split/ Join Split/Join
AND AND

Fig. 1. Example business process with all element types included




4 D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid

The research area of Process Discovery is concerned with the extraction of
a business process model from event logs without using any a-priori informa-
tion [17]. Conventional challenges in process discovery originate from the moti-
vation to achieve a high quality of results, i.e. discovered processes should sup-
port as accurately as possible the behaviour contained in the log. In particular
that means, process discovery algorithms have to deal with multiple objectives,
e.g. precision, simplicity, fitness - over-fitting vs. under-fitting (see [17]). Process
discovery algorithms are usually assumed to be carried out in an static way as an
”offline” method. This is reflected by the fact that the input for these algorithms
is an entire log as conceptually shown by the following definition:

Definition 2 Let the log L, = [eg, €1, ...€,] be a sequence of n+1 events ordered
by time of occurrence (¥i < jAe;,e; € Ly, : time(e;) < time(e;)) and BP, be the
business process model representing the behaviour in L,,, then process discovery
is defined as a function that maps a log L, to a process BP,,:

ProcessDiscovery : [eg, €1, ..., en] = BP,

3 Related Work

A large number of process discovery algorithms exist, e.g. Inductive Miner [5],
HeuristicsMiner [19], alpha-miner [14] and CCM [10]. These and many algo-
rithms have in common that at first a footprint of the log is created based on
which the process is constructed. Similar to the CCM, the following related al-
gorithms also discover block-structured processes: (1) Genetic process discovery
algorithms that restrict the search space to block-structured process models,
e.g. [2]. However, these are non-deterministic and generally have a high exe-
cution time due to exponentially expanding search space. (2) Another relevant
approach that is conceptually similar to the CCM is proposed in [5], the Induc-
tive Miner (IM): A top-down approach is applied to discover block-structured
Petri nets. The original algorithm evaluates constraints based on local relation-
ships between activities in order to identify the representing construct in an
inductive fashion. In recent work, the IM has also been extended to deal with
noise [6]. Generally, in all discovery approaches based on footprints known to the
authors the footprint is represented by a direct neighbours matrix representing
information about the local relations between the activities, e.g. for the BP of
Figure 1: h can only appear directly after g or e. As discussed in Section 4 the
CCM on the other hand extracts the process from a footprint based on global
relations between activities, e.g. h appears at some point after g or e.

However, of little importance for conventional process discovery algorithms
is their practicality with regards to an application during run-time: as defined
in Definition 2 process discovery is a static method that analyses an event log
in its entirety. An alternative to this approach is the immediate processing of
events when they occur to information of an higher abstraction level in order to
enable a real-time analysis. This approach is called Complex Event Processing
(CEP): a method that deals with the event-driven behaviour of large, distributed
enterprise systems [7]. More specifically, in CEP events produced by the sys-
tems are captured, filtered, aggregated, and finally abstracted to complex events



Scalable Dynamic BP Discovery with the CCM 5

representing high-level information about the situational status of the system,
e.g. performance, control-flow, etc. The need for monitoring aspects of business
processes at run-time by applying CEP methodologies has been identified by
Ammon et al., thus coining the term Event-Driven Business Process Manage-
ment (EDBPM) - a combination of two disciplines: Business Process Manage-
ment (BPM) and Complex Event Processing [1]. The dynamic process discovery
solution proposed in this paper is an application of EDBPM (see Section 5).

In the context of process discovery, an often used term for discovering pro-
cesses from event streams is Streaming Process Discovery. In [3] the Heuristic-
sMiner has been modified for this purpose by maintaining queues of fixed size
n € N containing the latest n events, i.e. the queues function as a ”sliding win-
dow” over the event stream. Three different approaches of how to process these
queues to a footprint have been proposed: (1) Stationary - every queue entry
has the same weight, (2) Ageing - older entries have a decreasing weight, and
(3) Self-Adapting Ageing - the factor with which the influence of older entries
decreases is dependent on whether a concept drift? has been detected (quickly
decreasing) or the process is assumed to be stationary (slowly decreasing). Ad-
ditionally, Lossy Counting, a technique using approximate frequency count, has
been investigated as a modification. A second approach for discovering concept
drifts on event streams is presented in [8]: an incremental discovery of declarative
process models using the stationary approach and Lossy Counting.

4 Static Constructs Competition Miner

The CCM as described in [10] is a deterministic process discovery algorithm that
operates in a static fashion and follows a divide-and-conquer approach which,
from a given event log, directly mines a block-structured process model that rep-
resents the main behaviour of the process. The CCM has the following main fea-
tures [10]: (1) A deadlock-free, block-structured business process without dupli-
cated activities is mined; (2) The following BP constructs are supported and can
be discovered for single activities: Normal, Optional, Loopover, and Loopback;
or for a set of activities: Choice, Sequence, Parallel, Loop, Loopover-Sequence,
Loopover-Choice, Loopover-Parallel (see Figure 2), and additionally all of them
as optional constructs - these are constructs supported by the majority of busi-
ness process standards like BPMN or YAWL; (3) If conflicting or exceptional
behaviour exists in the log, the CCM picks the "best” fitting BP construct.
Algorithm 1 shows the conceptual methodology of the CCM algorithm in
pseudocode. The CCM applies the divide-and-conquer paradigm and is im-
plemented in a recursive fashion (see lines 7, 16, and 17). At the beginning
getFootprintAndBuildConstruct is initially called for all involved activities
(A, = A) with the process bp consisting of only a start and end element. The
recursive function is first creating a footprint fp from the given log L only consid-
ering the activities specified in set A, (at the beginning all involved activities).
In a next step it will be decided which is the best construct to represent the
behaviour captured by fp: (1) if the activity set A,, only consists of one element,

2 A concept drift in this context is a behavioural change in the monitored process



6 D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid

(a) Sequence (f) Loopover
@ Ar Asecond Parallel
AND AND

Split
(c)ParaIIeI
o

(g) Loopover
Choice

(Flower) -
i

(1) Normal (2) Optional n 3) Lnopover (4) Loopback

Fig. 2. Business Process Constructs Supported by the CCM [10]

Join

Algorithm 1: Methodology of the CCM in Pseudocode

Data: Log L

Result: BP bp

1 begin

2 A < getSetOfAllActivitiesInLog(L);

3 BP bp < buildInitialBPWithStartAndEnd();
4

5

bp < getFootprintAndBuildConstruct(A, L, bp);
return bp;

6 Function getFootprintAndBuildConstruct(A,,, Log L,BP bp)
7 Footprint fp = extractFootprintForActivities(A,,, L);
8 if |A,,| =1 then

9 Construct c¢ < analyseConstructForSingleActivity(fp);

10 bp < createSingleActivityConstruct(c, A, );

11 else

12 ConstructsSuitability[] cs < calculateSuitabilityForConstructs(fp, A.,);
13 (Construct ¢, Afirst, Asecond) — constructCompetition(cs, Am);

14 bp < createBlockConstruct(c, bp);

15 bp < getFootprintAndBuildConstruct(Ajfye, L, bp);

16 bp < getFootprintAndBuildConstruct(Asecond, L, bp);

17 return bp;

it will be decided which of the single activity constructs (see bottom of Figure 2)
fits best - the process bp will then be enriched with the new single activity con-
struct (see line 11); (2) If the activity set A,, contains more than one element,
the suitability for each of the different constructs is calculated for any two activ-
ities z,y € A,, based on ”soft” constraints and behaviour approximations, e.g.
activities a and b are in a strong Sequence relationship. The result of this calcu-
lation (line 13) is a number of suitability matrices, one for each construct. In the
subsequent competition algorithm it is determined what is the best combination
of (A) the construct type ¢ € {Sequence, Choice, Loop, ...}, and (B) the two sub-
sets Aﬁrst and Asecong of Ay, with Aﬁ'rst U Asecond = Am; Aﬁrst N Asecond = {};
and Afrst, Asecond 7 {1}, that best accommodate all x,y-pair relations of the
corresponding matrix of construct ¢ (line 14). The construct is then created and



Scalable Dynamic BP Discovery with the CCM 7

added to the existing process model bp (line 15), e.g. XOR-split and -join if the
winning construct ¢ was Choice. At this stage the recursive method calls will be
executed to analyse and construct the respective behaviour for the subsets Afyg;
and Asecond- The split up of the set A, continues in a recursive fashion until
it cannot be divided any more, i.e. the set consists of a single activity (see case
(1)). The process is completely constructed when the top recursive call returns.

Of particular interest for the transformation of the CCM algorithm to a so-
lution for scalable dynamic process discovery is the composition of the footprint
and its calculation from the log. As opposed to many other process discovery
algorithms, e.g. alpha-miner [14], the footprint does not consist of absolute re-
lations, e.g. h is followed by a (see example in Figure 1), but instead holds
relative relation values, e.g. a is eventually followed by ¢ in 0.4 = 40% of the
traces. Furthermore, the footprint only contains global relations between activ-
ities in order to guarantee a low polynomial execution time for the footprint
interpretation [10]. The footprint of the CCM contains information about: (1)
the occurrence of each involved activities x € A,,, i.e. how many times x appears
at least once per trace, how many times an x appears on average per trace, and
how many times the trace started with z; (2) the global relations of each activ-
ity pair x,y € A, i.e. in how many traces x appears sometime before the first
occurrence of y in the trace, and in how many traces x appears sometime before
any occurrence of y in the trace®. All measures in the footprint are relative to
the number of traces in the log. Furthermore, not only one overall footprint is
created for the CCM but also for every subset Agys: and Agecond, that is created
during execution, a new sub-footprint is created (see Algorithm 1).

5 Dynamic Constructs Competition Miner

As established in Section 1, increasingly dynamic processes and the need for im-
mediate insight require current research in the domain of process mining to be
driven by a set of additional challenges. To address these challenges the concept
of Scalable Dynamic Process Discovery (SDPD), an interdisciplinary concept
employing principles of CEP, Process Discovery, and EDBPM, has been intro-
duced in [11]: ?SDPD describes the method of monitoring one or more BPMSs
in order to provide at any point in time a reasonably accurate representation of
the current state of the processes deployed in the systems with regards to their
control-flow, resource, and performance perspectives as well as the state of still
open traces.” That means, any potential changes in the mentioned aspects of
the processes in the system that occur during run-time have to be recognized
and reflected in the continuously updated ”current state” of the process. Due to
its purpose, for solutions of SDPD an additional set of requirements applies. For
this paper, the most relevant of them are [11]:

— Detection of Change: An SDPD solution is required to detect change in two
different levels defined in [12]: (1) Reflectivity: A change in a process instance

3 This stands in contrast to existing discovery solutions since in the CCM the foot-
print and its interpretation is not based on local relationships between activity oc-
currences, e.g. direct neighbours, but based on global relationships between them.



8 D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid

(trace), i.e. every single event represents a change in the state of the associated
trace. (2) Dynamism: A change on the business process level, e.g. because
events/traces occurred that contradicts with the currently assumed process.
— Scalability/Algorithmic Run-time: An SDPD solution is applied as CEP con-
cept and has to be able deal with large business processes operating with a
high frequency, i.e. the actual run-time of the algorithms becomes very im-
portant. Additionally, the key algorithms are required to be scalable to cope
with increasing workload at minimal possible additional computational cost.

Motivated by these challenges the initial process discovery approach was altered
to allow for dynamic process discovery. As opposed to the traditional static
methodology (see Definition 2), dynamic process discovery is an iterative ap-
proach as defined in the following:

Definition 3 Let log L, = [eq, €1, ...en] be a sequence of n+1 events ordered by
time of occurrence (¥i < j Ae;,e; € Ly, : time(e;) < time(e;)) and BP,, be the
business process model representing the behaviour in L, , then dynamic process
discovery is defined as a function that projects the tuple (en, BP,—_1) to BP,:

DynamicProcessDiscovery : (en, BP,—1) = BP,

As described in Section 4, the CCM is a static mining algorithm and has to be
modified in order to enable SDPD. The result of this modifications is called Dy-
namic CCM (DCCM). However, two restrictions for the DCCM with regards to
the previously mentioned requirements of SDPD apply: (1) instead of discovering
change on the BP perspectives control-flow, resources, and performance perspec-
tive, the DCCM described in this paper only focuses on discovering change in
the control-flow, and (2) only change on the abstraction level of Dynamism is
detected, i.e. whether or not the control-flow of the process has changed - the
detection of change on the abstraction level of Reflectivity will not be supported
by the DCCM. Additionally to the requirements of SDPD the DCCM features
the following important aspects: (1) robust: if conflicting, exceptional, or not
representable behaviour occurs in the event stream, the DCCM does not fail but
always picks the BP construct that best accommodates the recorded behaviour;
(2) deterministic: the DCCM yields the exact same output BP for the same
input stream of events.

The following modifications were applied to the default CCM to create the
DCCM and are described in more detail in the remainder of this section:

1. Splitting up the algorithm in two separate parts: one for dynamically updat-
ing the current footprint(s) complying to the scalability requirement, and
one for interpreting the footprint into a BP model which has less restrictions
with regards to its execution-time.

2. In the CCM the footprint is calculated in relation to all occurring traces.
This is not applicable for SDPD since the number of traces should not have
an influence on the execution-time of any component of an SDPD solution.
For this reason the footprint has to be calculated in a dynamic fashion, i.e.
an event-wise footprint update independent from the previously occurred
number of events or traces.



Scalable Dynamic BP Discovery with the CCM 9

3. The original behaviour of the CCM to carry out a footprint calculation
for every subset that has been created by the divide-and-conquer approach
is not optimal as then the DCCM would have to extract up to 2xn + 1
different footprints if only one activity was split-up from the main set for each
recursion.* This has been improved for the DCCM: for the most common
constructs Choice and Sequence the sub-footprints are automatically derived
from the parent footprint.

4. In rare cases it can happen that for every appearing event the state of the
process is alternating between a number of different control-flows. This is
caused by ”footprint equivalent” BP models, i.e. two models are footprint
equivalent if they both express the behaviour captured by the footprint. We
introduce a measure which favours the last control-flow state in order to
prevent the described behaviour.

5.1 Methodology of the Dynamic CCM

The original CCM algorithm had to be split up into two separate parts in or-
der to comply to the scalability requirement of SDPD. A component triggered
by the occurrence of a new event to update the dynamic footprint and a com-
ponent decoupled from the event processing which interprets the footprint into
a BP Model. The conceptual methodology of the DCCM is depicted in Fig-
ure 3. The components, models, and functionality of the DCCM are described
in the following: Events from the monitored Enterprise System, in which the
end-to-end process is deployed, are fed into an event stream. The Footprint Up-
date component is the receiver of these events and processes them directly into
changes on the overall Dynamic Footprint which represents the abstract state of
the monitored business process. If additional footprints for subsets of activities
are required as specified by the Sub-Footprint Configurations, e.g. if a Loop or
Parallel construct was identified, then these sub-footprints are also updated (or
created if they were not existent before). The Dynamic Footprint(s) can then at
any point in time be compiled to a human-centric representation of the business
process by the Footprint Interpretation component, i.e. the abstract footprint
representation is interpreted into knowledge conforming to a block-structured
BP model. In the DCCM this interpretation is scheduled dependent on how
many new completed traces appeared, e.g. the footprint interpretation is exe-
cuted once every 10 terminated traces. If the interpretation frequency m € N of
the DCCM is set to 1 a footprint interpretation is executed for every single trace
that terminated. The Footprint Interpretation algorithm works similar to the
CCM algorithm shown in Algorithm 1; but instead of extracting footprints from
a log (line 8), the modified algorithm requests the readily available Dynamic
Footprint(s). If a sub-footprint is not yet available (e.g. at the beginning or if
the process changed) the Footprint Interpretation specifies the request for a sub-
footprint in the Sub-Footprint Configurations in the fashion of a feedback loop.

Yeg for A = {a,bc,d} : (a,b,¢c,d) = ((a,b,0),(d) — (((a), (b)), (d) —
(((a), ((b), (), (d)), seven different footprints for sets {a, b, ¢, d}, {a, b, c}, {b, c}, {a},
{b},{c},{d} need to be created - (,) denote the nested blocks that emerge while
splitting the sets recursively.



10 D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid

Run-Time Sub- Scheduled
. Footprint
Enterprise Event_ Confgs. F.’rocess
System Processing Discovery
m
<
[} . .
. 5 2 } Footprint N Footpnnf
o p@ ﬁu 2 Update Interpretation
‘@ N'S;o 8
& At |3
plabd =
v Dynamic Business Process
Footprint  // Model

Fig. 3. Conceptual Methodology of the Dynamic CCM

Thus, Sub-Footprint Configurations and Dynamic Footprints act as interfaces
between the two components, Footprint Update and Footprint Interpretation.
The Footprint Interpretation cannot continue to analyse the subsets if no sub-
footprint for these exist yet. In this case, usually occurring in the warm-up or
transition phase, an intermediate BP model is created with activities containing
all elements of the unresolved sets as depicted in Figure 4.

o

Fig. 4. Result of the Footprint Interpretation on an event stream produced by the
example from Figure 1 if no sub-footprints for {a,b,c,d} and {e, f, g, h} are available
yet - only the top-level loop has been discovered

[a,b,c,d]|

[e,f,g h]

5.2 Run-time Update of the Dynamic Footprint

The Footprint Update component processes events to changes in the Dynamic
Footprint, i.e. updates the abstract representation of the process state. The orig-
inal footprint extraction of the CCM algorithm calculates all values in relation
to the number of occurred traces, i.e. every trace’s influence on the footprint is
equal: m To comply to the scalability requirement of SDPD the footprint
update calculation should only take a fixed amount of time, independent from
the total number of previously occurred events or traces. An increase of the
total number of involved activities can cause, however, a linear increase of the
execution-time due to the recalculation of the relations between the occurred
activity and, in the worst case, all other activities. The independence from pre-
vious traces is the reason the footprint is calculated in a dynamic fashion, i.e.
the dynamic footprint is incrementally updated in a way that older events ”age”
and thus have less influence than more recent events.

The ageing approach that is utilized in the Footprint Update of the DCCM
is the creation of an individual trace footprint> (TFP) for each trace and
add it multiplied by the trace influence factor t;; € R to the current dy-
namic overall footprint (DFP) multiplied by 1 — t;, e.g. for t;; = 0.01:

® the occurrence values for activities as well as the global relations (see end of Sec-
tion 4) are represented in the trace footprint by absolute statements true = 1 if it
occurred and false = 0 if not



Scalable Dynamic BP Discovery with the CCM 11

e

=1

@
T

influence of trace
o
o
[o*]
T

- =

0 20 40 60 g0 100
age of trace (trace number)

Fig. 5. Development of the influence of a trace for different trace influence factors(¢;s)

DFP = 0.01 x TFP 4 0.99 x DFP. That means, a trace footprint TFP; has
at the beginning the influence of 0.01, after another TFP; 1 has been added the
influence of TFP; decreases to 0.01 % 0.99, and after another 0.01 % 0.992 and so
on. By applying this incremental method, older TFP are losing influence in the
overall dynamic footprint. Figure 5 shows how the influence of a trace is depen-
dent on its "age”: If t;; = 0.1, the influence of a trace that appeared 60 traces
ago became almost irrelevant. At the same time if ¢;y = 0.01 the influence of a
trace of the same age is still a little more than half of its initial influence when
it first appeared. Essentially, the purpose of the trace influence factor t; is to
configure the "memory” and adaptation rate of the footprint update component.

Another important dynamism feature that had to be implemented was the
possibility to add an activity that has not appeared before. A new activity is
first recorded in the respective trace footprint. When the trace is terminated
it will be added to the overall footprint in which it is not contained yet. The
factored summation of both footprints to build the new dynamic footprint is
carried out by assuming that a not previously in the dynamic overall footprint
contained relation value is 0. An exception of this behaviour is the ”warm-up”

phase of the Footprint Update, i.e. if the amount of occurred traces is < % then

the influence of the dynamic footprint is % and of the trace footprint
1- % For instance if t;; = 0.01 and [traces| = 9 then is a new dynamic

footprint calculated with DFP1y = 1—10 x TFP + 19—0 x DFPg and for the next trace
DFPq, = % * TFP + % x DF'Pg. Because of this implementation the ”warm-up”
phase of the Footprint Update could be drastically reduced, i.e. processes were
already completely discovered a few traces after the start of the monitoring.

Furthermore, activities that do not appear any more during operation should
be removed from the dynamic footprint. This was implemented in the DCCM
in the following way: If the occurrence once value of an activity drops below a
removal threshold ¢, € R, ¢, < ¢; it will be removed from the dynamic footprint,
i.e. all values and relations to other activities are discarded.

The fact that especially many Choice and Sequence constructs are present
in common business processes, motivates an automated sub-footprint creation
in the Footprint Interpretation based on the parent footprint rather then cre-
ating the sub-footprint from the event stream. This step helps to decrease the
execution-time of the Footprint Update and was achieved by introducing an ex-



12 D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid

tra relation to the footprint® - the direct neighbours relation as used by other
mining algorithms (see Section 3). In the Footprint Interpretation this relation is
then used for creating the respective sub-footprints for Sequence and Choice con-
structs but not for identifying BP constructs since the direct neighbours relation
does not represent a global relation between activities.

5.3 Modifications in the Footprint Interpretation Component

As analysed in the beginning of this section, the original behaviour of the CCM
to retrieve a sub-footprint for each subset that has been created by the divide-
and-conquer approach is not optimal. This is why, in the Footprint Interpretation
the DCCM calculates the sub-footprints for the most common constructs, Choice
and Sequence, from the available parent footprint: (1) For the Choice construct
the probability of the exclusive paths are calculated with parst = D, ¢ A Fel(x)
and Psecond = erAsemd Fel(x) with Fel(x) being the occurrences of x as first el-
ement (see CCM footprint description in Section 4). Then the relevant values of
the parent footprint are copied into their respective new sub-footprints and nor-
malized, i.e. multiplied with pﬁlm and r— respectively. (2) The sub-footprints
for the Sequence construct are similarly built, but without the normalization.
Instead, the direct neighbours relation, now also part of the dynamic footprint,
is used to calculate the new overall probabilities of the sub-footprints.

If two or more BP constructs are almost identically suitable for one and the
same footprint, a slight change of the dynamic footprint might result in a differ-
ently discovered BP. This may cause an alternating behaviour for the footprint
interpretation, i.e. with almost every footprint update the result of the inter-
pretation changes. This is undesirable behaviour which is why the competition
algorithm was additionally modified as follows: All combinations of BP con-
struct and subsets are by default penalized by a very small value, e.g. %, with
the exception of the combination corresponding to the previously discovered BP
model, hence reducing the risk of discovering alternating BP models.

6 Evaluation

The static CCM algorithm has been tested for its accuracy in [10]: (1) in a
qualitative analysis the CCM was able to rediscover 64 out of 67 processes for
which a log was produced through simulation. (2) in the second part of the
evaluation the discovery performance of the CCM was compared to the mining
algorithms HeuristicsMiner (HM) [19], Inductive Miner (IM) [6], and the Flower
Miner (FM), all of which are readily available in the ProM nightly build [15]. For
ten given logs (including real-life logs and publicly available logs) the results of
the algorithms (each configured with their default parameters) were evaluated
for their trace fitness fi5, precision f,,, generalization fg4, and simplicity fs with
the help of the PNetReplayer plugin [18]. The averaged results of this analysis
are shown in Table 1; Note, that a lower simplicity value is better.

6 In rare cases (if Loop and Parallel constructs dominate) this modification can have a
negative effect on the execution-time since extra information needs to be extracted
without the benefit of mining less sub-footprints



Scalable Dynamic BP Discovery with the CCM 13

Table 1. Conformance results of the different discovery algorithms

Trace Fitness f;f Precision fp,. Generalization f, Simplicity fs
HM | IM |[FM|CCM|HM | IM | FM |[CCM| HM | IM | FM |[CCM| HM | IM |FM |CCM
0.919]0.966]1.0[0.979]0.718[0.622]0.124]0.663]0.941]0.915[0.992[0.930[155.3[122.8[56.4[111.9

In the remainder of this section early evaluation results of the DCCM are
presented with regards to its capability of detecting certain basic changes of a
real-time monitored business process. The basis of this evaluation is the example
model in Figure 1 which is simulated and the resulting event stream fed into the
DCCM. The CCM core is again configured with its default noise parameters.
Figure 6 shows the different values we want to measure. In the figure BP; and
BP; are the business processes deployed in the monitored system and BP] to
BP) are the discovered models by DCCM. Additionally, BP; and BP,, are
equivalent (BP; = BP),) as well as BP, and BP,, (BP, = BP)). For this part
of the evaluation the following measures are of interest:

— Warm-up: t,, € N the amount of completed traces the DCCM needs as input
at the start until the resulting model equivalently represents the process in
the system, i.e. until BP, = BP/,.

— Change Detection: t4 € N the amount of completed traces it takes to detect a
certain change in the monitored process - from the point at which the process
changed in the system to the point at which a different process was detected.
When the change is detected the newly discovered process is usually not equiv-
alent to the new process in the system BP, but instead represents parts of
the behaviour of both processes, BP; and BP;.

— Change Transition Period: ¢;7 € N the amount of completed traces it takes
to re-detect a changed process - from the point at which the process change
was detected to the point at which the correct process representation was
identified, i.e. until BP, = BP/. In this period multiple different business
processes may be detected, each best representing the dynamic footprint at
the respective point in time.

The first test will evaluate how the DCCM behaves at the beginning when
first exposed to the event stream, more particularly, we want to determine t,,.
Figure 7 shows a selection of the first few bp models extracted with trace in-
fluence factor tiy = 0.01 (see Section 5.2) and interpretation frequency m = 10,
i.e. an interpretation is executed every 10 completed traces: After the first trace
the discovered process is a sequence reflecting the single trace that defines the
process at that point in time. At trace 10, which is the next scheduled footprint
interpretation, the the algorithm discovered a Loop construct but cannot further
analyse the subsets since the corresponding sub-footprint was not requested yet.
Because of that, the feedback mechanism via the Sub-Footprint Configurations
is utilized by the Footprint Interpretation algorithm to register the creation of
BP,

BP in system: BP, ,

1 # of traces >

BP/, BP’/

m+1

Observed BP:; BP’ - BP., BP,, BP,
tw tq te

> <& 3. & >
1 < >

<&
<

Fig. 6. Measures for Detection of BP Change in System



14 D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid

Trace 1 :> Trace 10 :D Trace 20 :> Trace 40

[E, F, G, H]

Fig. 7. The Evolution of the Discovered BP Model During the Warm-up Phase

the missing sub-footprints. In the next scheduled run of the footprint interpre-
tation, the Parallel construct of a, b, ¢, and d is discovered but again the analysis
can not advance since a sub-footprint for the individual activity subsets has not
been created yet. Activities e, f, g, and h seem to have appeared only in exactly
this sequence until trace 20. Skipping one of the interpretation steps, we can see
that at trace 40 the complete process has been mined, i.e. ¢, = 40.

In Figure 8 the development of ¢, for different m € {1,2,3,6,10} and
t;; € {0.001,0.005,0.01,0.03} is depicted. The warm-up phase seems generally
very short and not strongly influenced by ¢;;. For m = 10 the warm-up phase
cannot be any shorter because the example process consists of a block-depth
of 3: Parallel-in-Parallel-in-Loop, i.e. 3 subsequent requests for sub-footprints
have to be made. This is an indicator that the modification effort to shorten the
warm-up phase had a positive effect. A small decrease of t,, can be noticed when
increasing the trace influence factor ti for small m, e.g. m € {1,2,3}.

In a second test we applied a change to the business process in the monitored
system and are interested in the behaviour of the DCCM as well as in the change
detection t4; and the change transition period ¢;.. Figure 9 shows the evolution of
the discovered BP model with trace influence factor t;y = 0.01 and interpretation
frequency m = 10. The change applied is the move of activity a from the position
before the inner Parallel construct to the position behind it (see traces 5750 and
6310). The change was applied after 5753 traces. The footprint interpretation

u
[=]

W B
o O

Warm=-up time t,,
=M
(=T - ]

[=]

0 0.005 0.01 0.015 0.02 0.025 0.03
trace influence factor tj

Fig. 8. The Warm-up Time in Relation to the Trace Influence Factor



Scalable Dynamic BP Discovery with the CCM 15

Trace 5750 o> Trace 5760 o> Trace 6310

Fig. 9. The Evolution of the Discovered BP Model During a Change (Move of A)

& ! ! ! ! '

o 2500 LN i iio.......i...m=10 -
o m=1---
S1500 F N\
£

o Loo =
2 i i i i i

= 0

S 0 0.005 0.01 0.015 0.02 0.025 0.03

trace influence factor tj

Fig. 10. The Change Transition Period in Relation to the Trace Influence Factor

detects at the first chance to discover the change (trace 5760) a concept drift
and finds via competition the best fitting construct: Parallel of a, ¢ and b, d. The
change detection t; seemed to be independent from m and ¢;; and was in all
cases immediately recognized”. In Figure 10 the development of t,,. for different
m € {1,10} and t; € {0.001,0.005,0.01,0.03} is shown. The change transition
period ¢, was strongly influenced by t;¢. If the value was very small (t;; = 0.001)
a change took up to almost 5000 traces in order to be reflected correctly in the
discovered BP model. On the other hand if the trace influence factor is chosen
too high, e.g. t;y = 0.05, not all variations of the process are included in the
dynamic footprint which results in frequently changing/alternating discovered
BP models. This is more likely to occur in large business processes containing
rarely executed but still relevant behaviour.

Additionally, first performance tests have been carried out for large artifi-
cially produced processes (without change). For a randomly created and strongly
nested process consisting of 100 activities the throughput of the footprint update
was close to 100,000 events per second and the footprint interpretation success-
fully discovered the process in a matter of seconds. Although not tested yet in a

7 Note, that other changes like deletion of an activity will take longer to recognise,
since their existence still ”linger” in the footprints "memory” for some time.



16 D. Redlich, T. Molka, W. Gilani, G. Blair, A. Rashid

real-life setting, the shown results indicate that the DCCM is very suitable for
discovering and monitoring large enterprise processes.

7 Conclusion and Future Work

In this paper we suggested modifications for the Constructs Competition Miner
to enable Scalable Dynamic Process Discovery as proposed in [11]. The CCM
is a process discovery algorithm that follows a divide-and-conquer approach to
directly mine a block-structured process model which consists of common BP-
domain constructs and represents the main behaviour of the process. This is
achieved by calculating global relations between activities and letting the differ-
ent supported constructs compete with each other for the most suitable solution
from top to bottom using ”soft” constraints and behaviour approximations. The
CCM was designed to deal with noise and not-supported behaviour. To apply the
CCM in a real-time environment it was split up into two separate parts, executed
on different occasions: (1) the footprint update which is called for every occurring
event and updates the dynamic footprint(s) and (2) the footprint interpretation
which derives the BP model from the dynamic footprint through applying a
modified top-down competition approach of the original CCM algorithm. The
modifications on the CCM were mostly motivated by the scalability requirement
of SDPD and successfully implemented which is shown by the performance re-
sults in the evaluation section. It was furthermore shown that changes in the
monitored process are almost instantly detected.

The presented approach of Dynamic CCM (DCCM) is driven by the require-
ments of real life industrial use cases provided by business partners within the
EU funded project TIMBUS. During the evaluation in the context of the use-
cases it became apparent that this concept still has a number of limitations which
are considered to be future work: (1) Changes in the state of the business pro-
cess are usually detected almost immediately but it may take a long time until
the new state of the system is reflected appropriately in the extracted business
process model. This behaviour originates from the fact that the footprint and
the interpreted business process are in a sort of intermediate state for a while
until the influence of the old version of the business process has disappeared.
Furthermore, the trace influence factor ¢; is a pre-specified value but in real-
ity it is dependent on how many traces we need to regard to represent all the
"behaviour” of the model®. This in turn is strongly dependent on the amount
of activities in the model, since more activities usually mean more control-flow
behaviour. A possible future modification could be to have the influence factor
dynamically adapt, i.e. similar to the self-adapting ageing proposed in [3]. (2) If
no sub-footprint is available for a set of activities, the footprint interpreter does
not further analyse this set. Through approximations or the use of the direct
neighbours relation at least a ”close enough” control-flow for the subset could
be retrieved. (3) The discovery of the state of a business process should also
comprise information of other perspectives than the control-flow, e.g. resource
and performance.

8 if t;; is set too high normal behaviour unintentionally becomes exceptional behaviour



Scalable Dynamic BP Discovery with the CCM 17

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

von Ammon, R., Ertlmaier, T., Etzion, O., Kofman, A., Paulus, T.: Integrating
Complex Events for Collaborating and Dynamically Changing Business Processes.
In: ICSOC/ServiceWave 2009 Workshops. LNCS, pp. 370-384. Springer, 2010
Buijs, J., Van Dongen, B., Van Der Aalst, W.: A genetic algorithm for discovering
process trees. In: Evolutionary Computation (CEC). pp. 1-8, IEEE, 2012
Burattin, A., Sperduti, A., Van Der Aalst, W.: Heuristics Miners for Streaming
Event Data. In: CoRR abs/1212.6383, 2012

Ko, Ryan K. L.: A computer scientist’s introductory guide to business process
management (BPM), In: Crossroads Journal, ACM, 2009

Leemans, S., Fahland, D., Van Der Aalst, W.: Discovering Block-Structured Pro-
cess Models from Event Logs - A Constructive Approach. In: Application and
Theory of Petri Nets and Concurrency, LNCS, pp. 311-329, Springer, 2013

. Leemans, S., Fahland, D., Van Der Aalst, W.: Discovering Block-Structured Pro-

cess Models from Event Logs Containing Infrequent Behaviour, In: Business Pro-
cess Management Workshops 2013, LNBIP, pp. 66-78, Springer, 2013

Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, Reading, 2002
Maggi, F. M., Burattin, A., Cimitile, M., Sperduti, A.: Online Process Discovery
to Detect Concept Drifts in LTL-Based Declarative Process Models, OTM 2013,
LNCS, pp. 94-111, Springer, 2013

OMG Inc: Business Process Model and Notation (BPMN) Specification 2.0, http:
//www .omg . org/spec/BPMN/2.0/PDF. formal/2011-01-03, 2011

Redlich, D., Molka, T., Rashid, A., Blair, G., Gilani, W.: Constructs Competition
Miner: Process Control-flow Discovery of BP-domain Constructs. In: 12th Int.
Conf. on Business Process Management, LNCS, pp. 134-150, Springer, 2014
Redlich, D., Gilani, W., Molka, T., Drobek, M., Rashid, A., Blair, G.: Introducing a
Framework for Scalable Dynamic Process Discovery. In: 4th Enterprise Engineering
Working Conference (EEWC), LNBIP 174, pp. 151-166. Springer, 2014

Redlich, D., Blair, G., Rashid, A., Molka, T., Gilani, W.: Research Challenges for
Business Process Models at Run-time. In: LNCS State-of-the-Art Survey Volume
on Models@run.time, 2014

Van Der Aalst, W., Ter Hofstede, A.: YAWL: Yet Another Workflow Language,
2003

Van Der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Transactions on Knowledge and Data Engi-
neering. 16(9):1128-1142, 2004

Van Der Aalst, W., Van Dongen, B.: ProM : The Process Mining Toolkit. Industrial
Engineering. 489: 1-4, 2009

Van Der Aalst et al., Process Mining Manifesto. BPM 2011 Int. Workshops, 2011
Van Der Aalst, W.: Process Mining - Discovery, Conformance and Enhancement
of Business Processes, Springer, 2011

Van Der Aalst, W., Adriansyah, A., Van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. WIREs Data Mining
and Knowledge Discovery, 2(2), 182-192, 2012

Weijters, A., Van Der Aalst, W., Alves de Medeiros, A.: Process Mining with
the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven
University of Technology, 2006.

Project partially funded by the European Commission under the 7th Framework Programme
for research and technological development and demonstration activities under grant agreement
269940, TIMBUS project (http://timbusproject.net/).



