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Abstract. This paper situates itself in the theory of variable length
codes and of finite automata where the concepts of completeness and
synchronization play a central role. In this theoretical setting, we in-
vestigate the problem of finding upper bounds to the minimal length of
synchronizing and incompletable words of a finite language X in terms of
the length of the words of X. This problem is related to two well-known
conjectures formulated by Černý and Restivo respectively. In particular,
if Restivo’s conjecture is true, our main result provides a quadratic bound
for the minimal length of a synchronizing pair of any finite synchronizing
complete code with respect to the maximal length of its words.
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1 Introduction

The concepts of completeness and synchronization play a central role in Com-
puter Science since they appear in the study of several problems on variable
length codes and on finite automata. According to a well-known result of Schü-
tzenberger, the property of completeness provides an algebraic characterization
of finite maximal codes, which are the objects used in Information Theory to
construct optimal sequential codings. Let X be a set of words on an alphabet
A. The set X is complete if any word on the alphabet A is a factor of some word
belonging to X∗, otherwise it is incomplete. In the latter case, any word which
is factor of no word of X∗ is said to be incompletable in X. In [18], Restivo
conjectured that a finite incomplete set X has always an incompletable word
whose length is quadratically bounded by the maximal length of the words of
X. Results on this problem have been obtained in [5, 14, 15, 18].

The property of synchronization plays a natural role in Information Theory
where it is relevant for the construction of decoders that are able to efficiently
cope with decoding errors caused by noise during the data transmission. A set
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X is synchronizing if there are two words u, v of X∗ such that whenever ruvs ∈
X∗, r, s ∈ A∗, one has also ru, vs ∈ X∗. The pair of words (u, v) is called
synchronizing pair of X.

In the study of synchronizing sets, the search for synchronizing words of min-
imal length in a prefix complete code is tightly related to that of synchronizing
words of minimal length for synchronizing complete deterministic automata and
the celebrated Černý Conjecture [12] (see also [1–3, 6–12, 16, 17, 20] for some re-
sults on the problem). In particular, in [2] (see also [3]), Béal and Perrin have
proved that a complete synchronizing prefix code X on an alphabet of d letters
with n code-words has a synchronizing word of length O(n2).

In this paper we are interested in finding upper bounds to the minimal lengths
of incompletable and synchronizing words of a finite set X in terms of the size
of X. We recall that the size of X is the parameter `(X) defined as the maximal
length of the words of X.

Let L be a class of finite languages. For all n, d > 0, we denote by RL(n, d)
the least positive integer r satisfying the following condition: any incomplete set
X ∈ L on a d-letter alphabet such that `(X) ≤ n has an incompletable word of
length r. Similarly, we denote by CL(n, d) the least positive integer c satisfying
the following condition: any synchronizing set X ∈ L on a d-letter alphabet such
that `(X) ≤ n has a synchronizing pair (u, v) such that |uv| ≤ c.

In this context, the main result of this paper provides a bridge between the
parameters RL(n, d) and CL(n, d). More precisely, denoting by F and by M
the classes of finite languages and of complete finite codes respectively, we show
that, for all n, d > 0,

CM(n, d) ≤ 2RF (n, d+ 1) + 2n− 2.

In particular, if Restivo’s conjecture is true, the latter bound gives

CM(n, d) = O(n2),

thus providing a quadratic bound in the size of the set for the minimal length
of a synchronizing pair of a finite synchronizing complete code.

In the second part of the paper, we study the dependence of the parameters
RL(n, d) and CL(n, d) upon the number of letters d of the considered alphabet,
by showing that both the parameters have a low rate of growth. More precisely,
we show that, for the class L of finite languages (resp. codes, prefix codes), we
have

RL(n, d) ≤
⌈
RL(dlog2 den, 2)

blog2 dc

⌉
,

and, for the class L of finite complete languages (resp. codes, prefix codes), we
have

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

blog2(d− 1)c

⌉
.

A similar result is obtained also when L is the class of finite (not necessarily
complete) languages (resp. codes, prefix codes).
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2 Preliminaries

In this section we shortly recall some basic results of the theory of automata
and of the theory of codes which will be useful in the sequel and we fix the
corresponding notation used in the paper. The reader can refer to [4, 13] for
more details.

Let A be a finite alphabet and let A∗ be the free monoid of words over the
alphabet A. The identity of A∗ is called the empty word and is denoted by ε.
The length of a word w ∈ A∗ is the integer |w| inductively defined by |ε| = 0,
|wa| = |w| + 1, w ∈ A∗, a ∈ A. Given w ∈ A∗ and a ∈ A, we denote by |w|a
the number of occurrences of the letter a in w. For any finite set W of words we
denote by `(W ) the maximal length of the words of W . The number `(W ) will
be called the size of W . Given words u,w ∈ A∗, u is said to be a factor of w if
w = αuβ, for some α, β ∈ A∗. The set of all factors of w is denoted by Fact(w).
Given a set W of words, the set of the factors of all the words of W is denoted
by Fact(W ). Similarly, given a word w, a word u is said to be a prefix of w if
w = uβ, for some β ∈ A∗. A set X is said to be prefix if, for any u, v ∈ X, with
v = uw, with w ∈ A∗, one has w = ε.

Definition 1. Let X be a subset of A∗. A pair of words (r, s) is an X-completion
of a word w if rws ∈ X∗. A word having an X-completion is a completable word
of X; conversely, a word with no X-completion is an incompletable word of X.
The set X is complete if all words of A∗ are completable words of X; X is
incomplete, otherwise.

Another crucial notion of this paper is that of synchronizing set.

Definition 2. A pair (u, v) ∈ X∗×X∗ is a synchronizing pair of X if for every
X-completion (r, s) of uv, it holds that

ru, vs ∈ X∗ .

The set X is synchronizing if it has a synchronizing pair.

The notion of synchronizing pair of a set is strictly related to that of constant.
A word c of X∗ is said to be a constant of X if, for every u1, u2, u3, u4 ∈ A∗ such
that u1cu2, u3cu4 ∈ X∗, one has u1cu4, u3cu2 ∈ X∗. The following result holds.

Lemma 1. Let X be a subset of A∗. If (u, v) is a synchronizing pair of X, uv
is a constant of X. Conversely, if c is a constant of X, (c, c) is a synchronizing
pair of X.

2.1 Complete and synchronizing codes

The notions of complete and synchronizing sets provide a rich structure in the
case that the set is a code. It is worth to shortly describe some fundamental
results on such sets. A set X of words over an alphabet A is said to be a (variable
length) code over A if it fulfills the unique factorization property, that is, for every
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word u ∈ X∗, there exists a unique sequence x1, . . . , xk of words of X such that
u = x1 · · ·xk. A well-known example of codes is given by prefix sets. The notion
of code is strictly related to the one of monomorphism. Let A and B be two
alphabets. A map h : A∗ → B∗ is said to be a monomorphism or (sequential)
encoding if h is injective and, for every u, v ∈ A∗, one has h(uv) = h(u)h(v).
The following lemma shows a well-known link between the notion of code and
that of monomorphism.

Proposition 1. Let h : A∗ → B∗ be a monomorphism. Then the set X = h(A)
is a code over B. If X is a code over B and X has the same cardinality of A, then
every bijection between A and X can be extended to a (unique) monomorphism
h : A∗ → B∗.

In view of Proposition 1, the monomorphism defined by a prefix code will be
called prefix encoding. A submonoid of A∗ is said to be free if it is generated by
a code. An important result due to Schützenberger provides a characterization
of a free submonoid of A∗ in terms of a property called stability. A submonoid
N of A∗ is said to be stable if, for every word u ∈ A∗, the existence of words
n1, n2, n3, n4 of N such that n2 = un1 and n4 = n3u implies u ∈ N .

Theorem 1. Let N be a submonoid of A∗. Then N is a free submonoid of A∗

if and only if N is stable.

Let us finally recall some well-known results on codes.

Theorem 2. (Kraft-McMillan inequality) Let A be a d-letter alphabet with d ≥ 2
and let k1, . . . , kn be a finite sequence of positive integers such that

n∑

i=1

d−ki ≤ 1 .

Then k1, . . . , kn is the sequence of the code-word lengths of a prefix code over A.

Given a code X over an alphabet A, X is said to be maximal if it is not properly
contained in any other code over A. Let us recall another important result due
to Schützenberger. It provides a tight relation between maximal and complete
codes.

Theorem 3. Let A be a d-letter alphabet and let X be a regular code of A∗. The
following conditions are equivalent:

– X is a maximal code;
– X is a complete code;
–
∑

x∈X d−|x| = 1.

Given a set X over an alphabet A, X is said to be maximal prefix if it is prefix
and it is not properly contained in any other prefix code over A. In the case of
prefix codes we get:
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Theorem 4. Let X be a prefix code of A∗ and suppose that X is a regular
language. The following conditions are equivalent:

– X is maximal prefix;
– X is right complete, that is, for every word u ∈ A∗, uA∗ ∩XA∗ 6= ∅;
– X is a maximal code.

It is worth recalling that Theorems 3 and 4 hold in the more general case of thin
codes that is, for all the subsets X of A∗ such that X ∩ A∗wA∗ = ∅, for some
word w ∈ A∗. Another relevant result concerning synchronizing and complete
codes is the following.

Theorem 5. Let X be a synchronizing and complete code. Then there exists a
constant c ∈ X∗ such that cA∗c ⊆ X∗. Conversely, if X is a code such that there
exists a word c ∈ X∗ with cA∗c ⊆ X∗, then X is synchronizing and complete.

2.2 Synchronizing automata and the Černý conjecture

A finite non-deterministic automaton is a tuple A = 〈Q,A, δ, I, F 〉 where Q is a
finite set of elements called states, δ is a map

δ : Q×A −→ P(Q),

where P(Q) is the power set of Q, and I, F are subsets of Q. The map δ is called
the transition function of A while I is called the set of the initial states and F
is the set of the final states. The canonical extension of the map δ to the set
Q × A∗ is still denoted by δ. If P is a subset of Q and u is a word of A∗, we
denote by δ(P, u) and δ(P, u−1) the sets:

δ(P, u) = {δ(s, u) | s ∈ P}, δ(P, u−1) = {s ∈ Q | δ(s, u) ∈ P}.

If no ambiguity arises, the sets δ(P, u) and δ(P, u−1) are denoted Pu and Pu−1,
respectively. With the automaton A, we can associate a directed labelled multi-
graph G = (Q,E), where the set E of edges is defined as E = {(p, a, q) ∈
Q×A×Q | q ∈ δ(p, a)}. We recall that if p, q ∈ Q, then q ∈ pu with u ∈ A∗, is

equivalent to the existence of a path c = p
u−→ q in G labelled by u. The label of

c is denoted by ||c||. A word u ∈ A∗ is said to be accepted by A if Iu∩F 6= ∅. The
language accepted by A, denoted by LA, is the set of all the words accepted by
A. An automaton A is said to be unambiguous if the following condition holds:
for every q1, q2, q3, q4 ∈ Q and for every u, v ∈ A∗ one has

q2, q3 ∈ q1u, q4 ∈ q2v ∩ q3v =⇒ q2 = q3.

An automaton A is said to be deterministic if for every q ∈ Q and for every
a ∈ A, Card(qa) ≤ 1.

An automaton A is said to be complete if for every u ∈ A∗, there exists some
q ∈ Q such that Card(qu) ≥ 1.
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An automaton A is said to be transitive if for every p, q ∈ Q, there exists
u ∈ A∗ such that q ∈ pu. In the sequel, we will only consider automata A such
that I = F = {1}, that is, with a unique initial and final state denoted 1. In
particular, the tuple of the automaton A will be simply denoted A = 〈Q,A, δ, 1〉.
Moreover, in the sequel, we will only consider transitive automata.

An unambiguous automaton A is said to be synchronizing if there exist two
words w1, w2 ∈ A∗ such that Qw1 ∩Qw−12 = {1}.

As is well known, a deterministic automaton A is synchronizing if and only if
there is a word u such that Card(Qu) = 1. Such a word is said to be a synchro-
nizing word of A. The following celebrated conjecture has been raised in [12].

Černý Conjecture. Each synchronizing and complete deterministic automaton
with n states has a synchronizing word of length (n− 1)2.

Let us recall an important problem related to the Černý Conjecture. Let G
be a finite, directed multigraph with all its vertices of the same outdegree. Then
G is said to be aperiodic if the greatest common divisor of the lengths of all
cycles of the graph is 1. The graph G is called a Road coloring graph (RC-graph
for short) if it is aperiodic and strongly connected. A synchronizing coloring of
G is a labeling of the edges of G that transforms it into a complete, deterministic
and synchronizing automaton. The Road coloring problem asks for the existence
of a synchronizing coloring for every RC-graph. In 2007, Trahtman proved the
following remarkable result [19].

Theorem 6. Every RC-graph has a synchronizing coloring.

Let us conclude this section by recalling some well-known properties of the au-
tomaton that accepts the submonoid generated by a finite set (see, e.g., [6]). Let
X be a finite set of words over an alphabet A. By using a standard construction,
one can associate with X a transitive automaton denoted by AX = 〈Q,A, δ, 1〉
that accepts X∗.

Lemma 2. Let X be a regular code (resp., prefix set). Then AX is an unambigu-
ous (resp., deterministic) automaton. Conversely, let A be an automaton such
that LA = X∗ where X∩X2X∗ = ∅. If A is unambiguous (resp., deterministic),
then X is a code (resp. a prefix set).

Incompletable words of a regular set are characterized by the following.

Lemma 3. Let X be a regular set and A = 〈Q,A, δ, 1〉 be a transitive automaton
accepting X∗. Then w ∈ A∗ is a completable word of X if and only if Qw 6= ∅.

In particular, X is complete if and only if A is complete.

Similarly it is possible to characterize synchronizing pairs of regular codes [6].

Lemma 4. Let X be a regular code and A = 〈Q,A, δ, 1〉 be a transitive unam-
biguous automaton accepting X∗ and w1, w2 ∈ A∗. Then (w1, w2) is a synchro-
nizing pair of X if and only if w1w2 ∈ X∗ and Qw1 ∩Qw2

−1 = {1}.
Consequently, X is synchronizing if and only if A is synchronizing.
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3 The main result

The main result of this paper is related to a problem that was formulated in [18]
by Restivo. Let L be a class of finite languages. For all n > 0 we set

RL(n) = sup
d≥1

RL(n, d) , CL(n) = sup
d≥1

CL(n, d) .

In [18], it was conjectured that if F is the class of all finite languages, then
RF (n) ≤ 2n2. If we restrict ourselves to prefix codes, we get

Proposition 2. ([18]) Let P be the class of finite prefix codes. Then

RP(n) ≤ 2n2.

However, in the general case, the previous bound was disproved in [14]. A more
general and larger counterexample is given in [15]. We can thus state a slightly
weaker version of the problem as follows.

Conjecture 1. (Restivo’s Conjecture) Let F be the class of all finite languages.
Then RF (n) = O(n2).

In this context, the main result of this paper is the following.

Proposition 3. Let M be the class of complete finite codes. For all n, d > 0,

CM(n, d) ≤ 2RF (n, d+ 1) + 2n− 2.

Before proving Proposition 3, it is convenient to discuss some interesting conse-
quences of this result. First, if Restivo’s conjecture is true, we get

CM(n, d) = O(n2).

Moreover, the bound above would be sharp, as we explain below. Consider the
prefix code Xn = aAn−1 ∪ bAn−2 on the alphabet A = {a, b}. The minimal
automaton accepting X∗n has been studied in [1], where it has been proved that
the minimal length of its synchronizing words is n2 − 3n + 3. From this, one
derives that any synchronizing pair (w1, w2) of Xn verifies |w1w2| ≥ (n− 1)2. In
particular, a synchronizing pair of Xn of minimal length is ((abn−2)n−1, ε). This
provides the lower bound

CM(n, 2) ≥ CP(n, 2) ≥ (n− 1)2,

for the parameter CM(n, 2).
It is also worth to do a remark on a recent result by Béal and Perrin. In [2]

(cf. also [3]), it is proved that a synchronizing complete prefix code X with n
code-words has a synchronizing word of length 2(n− 2)(n− 3) + 1. This result
is derived from an upper bound to the length of shortest synchronizing words
of synchronizing one-cluster automata. However, in view of Proposition 3 and
Restivo’s conjecture, this bound seems of no help in obtaining a good evaluation
of the parameter CP(n, 2), as one may have n ' 2`(X). This suggests that a
bound in term of the size of X may be more informative than a bound in terms
of the cardinality.
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3.1 Proof of Proposition 3

Let us now proceed to prove Proposition 3. For this purpose, let X be a finite
complete synchronizing code over a d-letter alphabet A and let n = `(X). Let
AX = 〈Q,A, δ, 1〉 be the unambiguous automaton that accepts X∗. The proof
of Proposition 3 is based upon the following lemma.

Lemma 5. Let (v1, v2) be a synchronizing pair of X. Then, there exist words
w1, w2 ∈ A∗ such that

|w1|, |w2| ≤ RF (n, d+ 1), Qw1 ⊆ Qv1, Qw2
−1 ⊆ Qv−12 .

Indeed, assume that Lemma 5 holds. As X is complete, the word w1w2 has an X-
completion (r, s). With no loss of generality, we may suppose that |r|, |s| ≤ n−1.
Since (v1, v2) is a synchronizing pair, one has

Q(rw1) ∩Q(w2s)
−1 ⊆ Qw1 ∩Qw2

−1 ⊆ Qv1 ∩Qv2−1 = {1}.

Moreover, the word rw1w2s ∈ X∗ is accepted byAX and therefore there is a state
q ∈ Q such that q ∈ 1rw1 and 1 ∈ qw2s. Thus, q ∈ Q(rw1) ∩ Q(w2s)

−1 ⊆ {1},
that is, q = 1. This proves that rw1, w2s ∈ X∗ and by Lemma 4 (rw1, w2s) is a
synchronizing pair of X.

Now, our main goal is to prove Lemma 5. For the sake of simplicity, we will
prove the existence of the word w1 that fulfills the conditions of Lemma 5 since
the proof of the existence of the word w2 can be obtained by using a symmetric
construction. The main tool of this proof is a new automaton we construct below.

Let (v1, v2) be a synchronizing pair of X. If v1 = ε, the statement is trivially
verified by w1 = v1. Thus we assume v1 6= ε and set v1 = ua, with u ∈ A∗ and
a ∈ A.

Let a′ be a symbol not belonging to A and let A′ = A ∪ {a′}. We consider
a new automaton A′ = 〈Q,A′, δ′, 1〉 where the transition map δ′ is defined as
follows: for every q ∈ Q and a ∈ A, δ′(q, a) = δ(q, a) and

δ′(q, a′) =

{
δ(q, a) ∪ {1} if q /∈ δ(Q, u),

δ(q, a) \ {1} if q ∈ δ(Q, u).
(1)

It is useful to remark that, by construction, the automaton A′ is still transitive.
Let Y be the minimal generating set of the language accepted by A′. Thus,
LA′ = Y ∗ and Y ∩ Y 2Y ∗ = ∅.

Lemma 6. The set Y is incomplete.

Proof. By (1) one has δ′(Q, ua′) = δ(Q, ua)\{1} = δ(Q, v1)\{1} and δ′(Q, v−12 ) =
δ(Q, v2). Taking into account that (v1, v2) is a synchronizing pair of X, one de-
rives

δ′(Q, ua′) ∩ δ′(Q, v−12 ) = (δ(Q, v1) ∩ δ′(Q, v−12 )) \ {1} = ∅ .
It follows that δ′(Q, ua′v2) = ∅. This equation proves that the automaton A is
not complete. Thus, by Lemma 3, Y is an incomplete set. ut
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Lemma 7. It holds that `(Y ) ≤ `(X).

Proof. In order to prove the statement, it is enough to show that, for every
y ∈ Y, there exists x ∈ X with |y| ≤ |x|.

Let y = a1 · · · ak ∈ Y , with ai ∈ A′, for i = 1, . . . , k. Since Y ∩ Y 2Y ∗ = ∅, in
the graph of A′ there is a path

c′ = 1
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk

ak−→ 1,

where, for every i = 1, . . . , k, qi 6= 1. Let us now construct a path c in the graph
of AX such that ||c|| = x ∈ X, with |x| ≥ |y|, so completing the proof.

By the definition of A′, any edge p
b−→ q of the graph of A′ with b 6= a′ is

also an edge of the graph of A. Moreover, if p
a′−→ q is an edge of the graph of A′

with q 6= 1, then p
a−→ q is an edge of the graph of A. Thus, by replacing in c′,

every transition qi
a′−→ qi+1, by qi

a−→ qi+1 and deleting the last edge qk
ak−→ 1,

we find a path

d = 1
b1−→ q1

b2−→ q2 · · ·
bk−1−→ qk

of the graph of A. Since A is transitive, one can catenate d with a simple path
from qk to 1. In such a way, we obtain a path c of the graph of A starting and
ending in 1, with all intermediate states distinct from 1 and length ≥ k + 1. As
is well known, as A is unambiguous, the label x of such a path is a word of the
minimal generating set X of X∗. Since |x| ≥ k + 1 = |y|, this completes the
proof. ut

We now prove the following lemma.

Lemma 8. Let v be an incompletable word of Y of minimal length. There exists
a word w1 ∈ A∗ such that

|w1| ≤ |v|, Qw1 ⊆ Qv1.

Proof. Let v be an incompletable word of Y of minimal length, with the number
|v|a′ as small as possible. Then, by Lemma 3, one has δ′(Q, v) = ∅.

The letter a′ necessarily occurs in v, since by the completeness of A, one
has δ′(Q, r) = δ(Q, r) 6= ∅ for all r ∈ A∗. Thus, we can write v = u1a

′u2, with
u1 ∈ A∗ and u2 ∈ A′∗.

Let us verify that δ(Q, u1) ⊆ δ(Q, u). Indeed, suppose the contrary. Then,
by (1), one has

δ′(Q, u1a
′) = δ(Q, u1a) ∪ {1} = δ′(Q, u1a) ∪ {1}

and consequently, δ′(Q, u1au2) ⊆ δ′(Q, u1a′u2) = ∅. Thus, u1au2 is an incom-
pletable word of Y , but this contradicts the minimality of |v|a′ .

We conclude that δ(Q, u1) ⊆ δ(Q, u) and therefore taking w1 = u1a and
recalling that v1 = ua, one has δ(Q,w1) ⊆ δ(Q, v1) and |w1| ≤ |v|. The statement
follows. ut
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Let us finally remark that Lemma 7 and Lemma 8 yield

|w1| ≤ RF (n, d+ 1), Qw1 ⊆ Qv1.

The proof of Lemma 5 is thus complete.

4 Reduction to the binary case

The aim of this section is to study how much the parameters RL(n, d) and
CL(n, d) vary according to the cardinal number d of the alphabet. We start to
analyze the parameter RL(n, d). In the sequel, B denotes the binary alphabet
B = {a, b}. The following lemmas are needed for the proof of Proposition 4.

Lemma 9. Let Y ⊆ A∗ be a complete finite set. Then any word w of A∗ has a
Y -completion (y, s) with y ∈ Y ∗.

Lemma 10. Let h : A∗ → B∗ be a prefix encoding and Y ⊆ A∗. The set h(Y )
is complete if and only if Y and h(A) are complete.

Encoding a d-letter alphabet on a suitable complete binary prefix code one
obtains

Proposition 4. Let L be the class of finite languages (resp. codes). Then

RL(n, d) ≤
⌈
RL(dlog2 den, 2)

blog2 dc

⌉
. (2)

Proof. Let A be a d-letter alphabet and let X be a finite incompletable language
over A of size n. By Theorems 2 and 3, there exists a maximal prefix code Y
over B such that Card(Y ) = d and, for every y ∈ Y , blog2 dc ≤ |y| ≤ dlog2 de.
Let h : A∗ → B∗ be a monomorphism constructed by Y . In particular, for every
a ∈ A, we have

blog2 dc ≤ |h(a)| ≤ dlog2 de. (3)

By (3) the size of h(X) is not greater than ndlog2 de. By Lemma 10, since X is
incompletable, h(X) is incompletable as well. Let v be an incompletable word
in h(X) of minimal length. Hence we have

|v| ≤ RL(dlog2 den, 2). (4)

Since h(A) is a complete prefix code, by Theorem 4, there exist u ∈ A∗ and
s ∈ B∗ such that h(u) = vs and by (3)

|u| ≤
⌈ |v|
blog2 dc

⌉
. (5)

Let us check that u is incompletable. By contradiction, deny. Then r′us′ ∈
X∗, for some r′, s′ ∈ A∗. Consequently, h(r′us′) = h(r′)vsh(s′) ∈ h(X∗), thus
implying that v is completable in h(X). Now (2) easily follows from the latter,
(4) and (5). ut
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Let us now analyze the parameter CL(n, d). The next two lemmas are useful
for this purpose. In particular the following lemma is algebraically similar to
Lemma 10.

Lemma 11. Let h : A∗ → B∗ be a monomorphism and let Y ⊆ A∗ be a complete
set. The set h(Y ) is synchronizing if and only if Y and h(A) are synchronizing.

Lemma 12. Let k1, . . . , kn, d > 0 be such that

gcd(k1, k2, . . . , kn) = 1 ,

n∑

i=1

d−ki = 1.

Then k1, . . . , kn are the code-word lengths of a synchronizing complete prefix code
over d letters.

Remark 1. It is worth noticing that a finite synchronizing complete prefix code
over d letters satisfies both the conditions of Lemma 12. Indeed, by Theorem 3,
if X = {x1, . . . , xn} is a complete code over d letters, one gets

∑n
i=1 d

−ki = 1.
Moreover, by Theorem 5, there exists a constant x ∈ X∗ for X such that xA∗x ⊆
X∗. Let γ = gcd(k1, k2, . . . , kn). Since, by the latter result, x2, xax ∈ X∗, with
a ∈ A, γ should divide both 2|x| and 2|x|+ 1, whence γ = 1.

As an application of the two lemmas above, encoding a d-letter alphabet on a
suitable complete binary synchronizing code, one obtains the following result:

Proposition 5. Let L be the class of finite complete languages (resp. codes,
prefix codes). Then

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

blog2(d− 1)c

⌉
. (6)

A similar bound can be found also in the case where completeness is not
required:

Proposition 6. Let L be the class of finite languages (resp. codes, prefix codes).
Then

CL(n, d) ≤
⌈
CL(dlog2(d+ 1)en, 2)

dlog2(d+ 1)e

⌉
. (7)
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