Verifying Modelling Languages using Lightning:
a Case Study

Loic Gammaitoni, Pierre Kelsen, and Fabien Mathey

University of Luxembourg

Abstract. The formal language Alloy was developed to provide fully
automatic analysis of software designs. By providing immediate feed-
back to users it allows early detection of design errors. The main goal
of the Lightning tool is to apply the power of Alloy’s automatic analy-
sis to the domain of software language engineering. The tool allows to
represent abstract syntax, concrete syntax and semantics of a modelling
language in Alloy. In this paper we describe the verification capabilities
of Lightning with the help of a concrete modelling language, namely the
language of structured business processes.

1 Introduction

The formal language Alloy was developed to ”capture the essence of software
abstractions simply and succinctly, with an analysis that is fully automatic,
and can expose the subtlest of flaws” [9]. By allowing continuous automatic
analysis during the design process software modellers can uncover design errors
quickly. This design process, which could aptly be called ”agile modelling”, also
stimulates the modellers since it provides immediate feedback.

The goal of the Lightning tool[1] is to apply the power of the Alloy language
and its tool, the Alloy Analyzer, to the domain of software language engineering.
It was already shown earlier [12] that Alloy is a suitable language for defining
syntax and semantics of modelling languages . The Lightning tool can be viewed
as a first practical validation of ideas presented in that work.

One can consider Lightning as an important step towards a language work-
bench based on Alloy. The emphasis of the tool is currently on automatic vali-
dation of language definitions using Alloy’s SAT-based analysis. All basic com-
ponents of a modelling language can be defined in the tool: abstract syntax,
concrete syntax and semantics. Concrete syntax is currently restricted to visu-
alising language models. Semantics can be specified in the style of operational
semantics and its execution can be visualised as well. All specifications of lan-
guage components and accompanying transformations are defined in Alloy. The
tool is, however, not limited to language specifications expressed in Alloy since
it allows importing metamodels expressed in Ecore (feature not described in the
present paper). For Lightning to become a full-fledged language workbench [5],
more sophisticated editor support has to be provided (only exists in rudimentary
form in the present version) as well as code generation facilities to interface with
existing programming languages.

The main purpose of this paper is a description of the verification capabilities
of the Lightning tool. We will examine how the tool assists the user in writing
correct language specifications.

This paper is organised as follows: we first describe the case study we will
use in this paper. In section 3 we introduce the Lightning tool. We then de-
scribe how Lightning assists the user in designing the abstract syntax (section
4), concrete syntax (section 5), and semantics (section 6). We wrap up the paper
with a discussion of our contribution in the context of related work and present
concluding remarks and future work in the final section.

2 Case Study

In this paper, we illustrate Lightning’s verification features by designing a Struc-
tured Business Process (SBP) language.

Fig. 1. A Structured Business Process

SBPs consist of tasks representing actions performed towards the completion
of the process and of control nodes structuring the process. Those tasks and
control nodes are interconnected using transitions so that the following holds:

— The process has a unique start and end, represented by the Start and End
control nodes, so that no transition is incoming to Start or outgoing from
End.

— Each task has exactly one incoming and one outgoing transition.

— XOR and AND are control nodes used to delimit blocks representing the
nesting of processes. The difference between XOR and AND is purely se-
mantical. While AND means that all sub-processes (outgoing transitions)
need to be processed, XOR specifies that exactly one of them has to be
processed.

— XOR and AND control nodes have one incoming and more than one outgoing
transition if they are used to open a new block (in which case they are called
XOR split and AND split), or more than one incoming and one outgoing
transition if they are used to close a new block (in which case they are called
XOR join and AND join)

— A Block opened by an AND split or XOR split needs to be closed by an
AND join or XOR join, respectively.

— The process is acyclic (all tasks are traversed at most once)

An example business process representing a model expressed in this language is
represented in fig. 1 using traditional notation from the business process com-
munity.

This choice of case study is based on the fact that:

— The SBP’s specification has been formalized in [17], thus providing a precise
description of the syntax and semantics of this language.

— It has sufficient complexity to illustrate the usefulness of our tool.

— It is practically relevant since many existing business processes are express-
ible in this form [17].

This case study has been implemented using Lightning in the context of a
master thesis. The concrete verification examples presented in this paper have
actually been encountered during that work.

3 Lightning

The Lightning tool is a language workbench based on Alloy. It is distributed as
an Eclipse plugin '. It provides support to formally express all the components
of a language (Abstract Syntax, Concrete Syntax, and Semantics), and allows
to verify these using Alloy’s SAT based model finding mechanism. Amongst the
notable features of Lightning are :

— A complete Alloy editor (with outline, error markers and syntax highlighting)
— Ecore support
— An editor allowing to modify generated instances.

The signature trait of Lightning, however, is to allow incremental language de-
velopment (depicted in fig. 2) by coupling the instance generation of Alloy with
the domain specific visualization and model execution induced by the concrete
syntax and semantics definition, respectively . This approach facilitates the iden-
tification of design errors [7].

In the following sections, we will delve into the details of the design process
shown in fig. 2 and describe associated verification tasks.

! Freely available at : http://lightning.gforge.uni.lu

© 00U WN -

Design Design

ASM CSM /) Language model
Design generation
SM Legend
3
2 ASM: Abstract Syntax Model
CSM: Concrete Syntax Model
errorc SM : Semantics Model
1 detection

Fig. 2. Spiral diagram depicting how languages are incrementally designed in Lightning

4 Abstract Syntax Design

In Lightning the abstract syntax of a language consists of an Alloy model defining
the set of valid language models. We can view this model as the metamodel of the
language. In our SBP case study, the abstract syntax model (ASM) defines con-
cepts of the language (Tasks, Flows, Control nodes, ...), relations between those
concepts (e.g., Flows have Nodes as source and target), and well-formedness rules
expressed as constraints (e.g., to ensure acyclicity of the process). The following
is an excerpt of the abstract syntax model:

abstract sig Node{}
abstract sig Control extends Node{}
one sig Start extends Node{}{this not in Flow.target}
one sig End extends Node{}{this not in Flow.source}
sig Task extends Node{}
sig AND_JOIN,AND_SPLIT,XOR_JOIN,XOR_SPLIT extends Control{}
sig Flow{
source: Node,
target: Node
by
fact acyclic{
all n: Node | n not in n. ((target).source)
}

Listing 1.1. Abstract Syntax Model excerpt

We can use Alloy’s instance generation mechanism to verify the abstract syntax.
This scenario corresponds to the cycle labelled 1 in fig. 2. Figure 3 depicts one
of the language models thus obtained from our SBP specification. Although it
is still possible to interpret this model correctly, it is a bit tedious since it is
not presented in the traditional way but reflects the structure of the abstract
syntax. The more complex a language model is (in terms of number of elements
and links present), the harder it becomes to comprehend it. This is why it is
advised to start defining the concrete syntax of a language (transit to cycle 2 in
fig. 2) once its models become hard to check through their default visualization.

In the next section we define how domain specific visualizations are specified
in Lightning.

=

[

source: 10
target: 10

Fig. 3. Raw visualization of a language model (using Alloy’s Magic Layout)

5 Concrete Syntax Design

The Concrete Syntax of a language consists of an Alloy model defining a trans-
formation from the previously defined Abstract Syntax Model (ASM) to a prede-
fined Visual Language Model (VLM). This definition follows the approach that
Kleppe describes in [13]. This VLM, named LightningVLM and also expressed
in Alloy, consists of:

— A set of visual elements that can be linked and composed

— Layout and color declarations that can be used as properties of visual ele-
ments

— Well-formedness rules that enforce that any instance can be correctly ren-
dered once interpreted by the tool (by preventing the presence of cyclic
compositions, for example)

The transformation model enforces that all of its instances contain a given
ASM instance and its corresponding VLM instance via the use of mapping rules
and integration predicates; these predicates specify the values of fields of atoms
in the VLM instance. The VLM instance can then be interpreted by Lightning
in order to be rendered graphically. This process is the essence of the concrete
syntax support the tool provides and is depicted in fig. 4. Note that in the current
version of Lightning the concrete syntax is used only for visualisation and cannot
be directly edited.

In order to be processed in a reasonable time, the Alloy model defining this
ASM to VLM transformation can be written following a sub-syntax of Alloy,
such that interpretation can be used rather than SAT-solving. This approach
called functional module is introduced in [8].

Below we provide a selection of the mapping rules and their integration pred-
icates (prefixed with the prop.- keyword) defined in order to provide a concrete
syntax to our SBP language.

QOO U WwN
—~

/x each task 1is represented by a rectangle, and each node has its
corresponding label x/

one sig Transformation{

mapTask: Task one —> one RECTANGLE,

mapNodeText: Node one —> one TEXT

/* a task is represented by a rectangle with a white
background that contains the corresponding text */
pred prop-mapTask(n: Task, r:RECTANGLE) {

r.layout = VERTICALLAYOUT

r.color = WHITE

Transformation
Model

Instance of

Flexible
visualization

transformation instance

VLM
Interpretation

Fig. 4. Visualization process using a transformation from ASM to VLM

r.composedOf[0] =

Bridge . mapNodeText [n]

/x the text is black, not styled, and is labeled
after the label of the node it represents x/
pred prop-mapNodeText(n: Node, t:TEXT) {

t.color = BLACK
t.isltalic = False
t.isBold = False
t.textLabel [0] = n

Once the concrete syntax is defined in this way, it becomes easier to detect
errors in an instance model. Figure 5 depicts the language model previously
shown in fig. 3, visualized this time using its concrete syntax definition.

Taskso

Tasks$1

AND_JOINSO

Task§2 =

Tasks3

Fig. 5. Visualization of the instance depicted in fig. 3 using its concrete syntax defini-

tion

Only one glance at fig. 5 suffices to notice that our SBP language is under-
specified. Indeed, in this language model, two XOR splits are converging into

==

H O OO Utk W -

a single join. Moreover this join, which is an AND join, doesn’t have the same
nature than the converging splits. In order to fix this design error, we need to
associate splits and joins together. We do this via the definition of control boxes:

sig ControlBox {
split: Control,
join: Control
(
// SPLIT AND JOIN HAVE SAME NATURE
split in AND.SPLIT and join in AND_JOIN) or
(split in XOR.SPLIT and join in XOR_JOIN)
// PAIRING EACH SPLIT WITH A GIVEN JOIN
all s: (succ[split]) | s in (preds[join])
all j: (pre[join]) | j in (succs[split])
}

Adding the concept of a control box to the abstract syntax and repeating
the instance generation shows us that the error has been well identified and
fixed. The error processing we just discussed illustrates a transit to the cycle
1 of fig. 2., i.e., to the case where an error found in the visualisation reveals
an error in the underlying abstract syntax. Of course the transformation model
describing the visualisation may be faulty itself. In this case the error in the
visual representation may point to an error in the concrete syntax model. This
situation corresponds to a transit to the cycle 2 of fig. 2, leading to redesigning
the Concrete Syntax model. Checking if the error seen in the concrete syntax
visualization is also present in the concrete-syntax-less visualization (described
in the previous section) allows to decide whether or not the error has been
introduced by the concrete syntax definition.

6 Semantics Definition

Lightning currently offers the possibility to define the operational semantics of
languages.
The semantics definition in Lightning consists of:

— a Semantics Model (SM) in which the concepts of state and trace are defined.
A step predicate is specified that expresses the condition that one state
follows another state in the trace.

— a Semantics visualization transformation model, reusing most of the rules
present in the ASM to VLM transformation but adding rules to represent
the properties of the semantics state.

For our case study each state consists of a set of nodes that are currently
active in the execution of the business process. The corresponding field of the
Alloy signature is called currentNodes. That is, for a given state s, the expression
s.currentNodes denotes the set of active nodes in state s. The visualisation rep-
resents the currently active nodes by highlighting them in the business process
model.

To verify the correctness of the operational semantics, one can visualize its
possible executions. To illustrate this verification, let us consider the following
predicate as a first attempt to define the semantics of XORs:

"

pred XORNodes(current: Node,s2: State) {
current in XOR_SPLIT and one node: current.(” source).target | node
in s2.currentNodes

This predicate ensures that given a current node that is a XOR_SPLIT, the
set of current nodes belonging to the next semantics state contains exactly one of
the nodes directly following the XOR_SPLIT (mutual exclusion). Figure 6 gives
an example of an erroneous execution.

(a) (b) (c)

Start$0

XOR_SPLITS0 XOR_SPLITSO XOR_SPLIT$0

TaskS5 Taskso Task$s TaskS0o TaskS§5 Tasks0

Fig. 6. Erroneous execution of a business process model

Although the transition from (a) to (b) is performed as expected, the transi-
tion from (b) to (c) shows us that our XOR semantics is underspecified. Indeed,
the predicate previously shown enforces that only one of the nodes directly fol-
lowing an active XOR_SPLIT should be part of the current nodes. This predicate
thus does not specify the state of the other nodes, thus allowing extraneous nodes
to appear in the set of current nodes for a given state. To fix this, one simply
needs to enforce that the set of current nodes of a given state is contained in the
set of successors of all the current nodes present in the previous semantics state
(code omitted for lack of space).

The example above illustrates the case where an error in the concrete syntax
representation of the semantic state points to an error in the underlying semantic
model. This case corresponds to the cycle 3 of fig. 2.

7 Discussion and Related Work

The term ”language workbench” was made popular by Martin Fowler [6]; it
denotes a tool that supports the efficient definition, reuse and composition of
languages and their IDEs [5]. The Lightning tool may be viewed as a language
workbench that is based on the formal language Alloy (although not a full-
fledged one as mentioned in the introduction). Because of its formal basis it
differs from existing language workbenches such as MetaEdit+[11], MPS[18],
and Spoofax[10]. Few workbenches currently support formal semantic analysis;
notable exceptions are Kermeta [2] and Atom 3 [4] for which some formal analysis

is available via a translational semantics (to Maude for Kermeta [3] and to Alloy
for AToM3 2, [19]).

Our work is based on the premise that developing modelling languages ben-
efits from the lightweight formal modelling approach offered by Alloy because
it gives language developers immediate feedback on design decisions using auto-
matic formal analysis and thus allows to detect design errors early. We can thus
view Lightning as an attempt to provide agile modelling of software languages
in a way similar to the initial intent of Alloy, namely providing agile modelling
of software designs.

Because our tool is based on Alloy it also inherits the inherent limitations
of Alloy. Indeed verification is based on instance finding via SAT solving. The
effectiveness of this approach intimately depends on the small scope hypothesis,
stating that most of the design errors can be found in small models. Assuming
the small scope hypothesis holds, the approach will allow to reduce the scopes of
signatures in Alloy so that a correct answer can be found in reasonable time. Of
course a negative answer in the search of a counterexample does not exclude the
possibility that there may be one but may point instead to the need for trying
out larger scopes, resulting of course in longer running times.

In the context of language design, though every aspect of a language is written
in Alloy, the performance limitations of Alloy we just mentioned only apply
to the generation of language models (ASM instances). The visualisation and
semantics, benefiting from functional modules, can be processed efficiently [§].

8 Conclusion

We have presented in this paper how Lightning allows the application of a
lightweight verification technique based on Alloy from the earliest stages of a
domain specific language design process to its completion. In particular we have
given concrete examples of verification tasks that were carried out during the
design of a language for structured business processes.

Regarding future work much remains to be done. One obvious hindrance to
the use of our tool is the fact that it requires prior knowledge of Alloy. We are
currently trying to see to what extent we can provide graphical interfaces to
most of the modelling tasks in the tool. In particular we have already partially
implemented such an interface for defining transformations.

Another fundamental question that needs to be investigated concerns per-
formance. Indeed, once the metamodel becomes a bit larger (with, say, tens of
signatures) Alloy’s instance generation tends to slow down appreciably. Recent
work on model slicing (such as [14,15]) in the context of UML/OCL models)
suggests that in many cases instance generation can be made more efficient by
generating instances for subparts of the metamodel and then combining these
partial instances into an instance of the whole metamodel. We plan to investigate
this type of approach in the context of our work.

2 A newer version of the tool named AToMPM [16] is available

References

N

11.

12.

13.

14.

15.

16.

17.

18.

19.

Lightning tool web site, http://lightning.gforge.uni.lu.

Kermeta tool web site, http://www.kermeta.org.

Moussa Amrani. A formal semantics of kermeta. Formal and Practical Aspects of
Domain-Specific Languages: Recent Developments, 2012.

Juan De Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism and
meta-modelling. In Fundamental approaches to software engineering, pages 174—
188. Springer, 2002.

Sebastian et al. Erdweg. The state of the art in language workbenches. In Martin
Erwig, Richard F. Paige, and Eric Wyk, editors, Software Language Engineering,
volume 8225 of Lecture Notes in Computer Science, pages 197-217. Springer In-
ternational Publishing, 2013.

Martin Fowler. Language workbenches: The killer-app for domain specific lan-
guages. http://martinfowler.com/articles/languageWorkbench.html.

Loic Gammaitoni and Pierre Kelsen. Domain-specific visualization of alloy in-
stances. In ABZ, pages 324-327, 2014.

Loic Gammaitoni and Pierre Kelsen. Functional Alloy Modules. Technical Report
TR-LASSY-14-02, University of Luxembourg; http://hdl.handle.net/10993/16386.
Daniel Jackson. Software abstractions. MIT Press Cambridge, 2012.

. Lennart CL Kats and Eelco Visser. The spoofax language workbench: rules for

declarative specification of languages and IDEs. In ACM Sigplan Notices, vol-
ume 45, pages 444-463. ACM, 2010.

Steven Kelly, Kalle Lyytinen, and Matti Rossi. Metaedit+ a fully configurable
multi-user and multi-tool CASE and CAME environment. In Advanced Informa-
tion Systems Engineering, pages 1-21. Springer, 1996.

Pierre Kelsen and Qin Ma. A lightweight approach for defining the formal semantics
of a modeling language. In Model Driven Engineering Languages and Systems,
pages 690-704. Springer, 2008.

Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Lan-
guages Using Metamodels. Addison-Wesley Professional, 2008.

Asadullah Shaikh, Robert Clarisé, Uffe Kock Wiil, and Nasrullah Memon.
Verification-driven slicing of uml/ocl models. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, pages 185-194. ACM,
2010.

Asadullah Shaikh, Uffe Kock Wiil, and Nasrullah Memon. Uost: Uml/ocl aggres-
sive slicing technique for efficient verification of models. In System Analysis and
Modeling: About Models, pages 173—-192. Springer, 2011.

Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Hiiseyin Ergin. Atompm: A web-based modeling environment. In
Demos/Posters/StudentResearch@ MoDELS, pages 21-25, 2013.

Silvano Colombo Tosatto, Guido Governatori, and Pierre Kelsen. Towards an
abstract framework for compliance. Proceedings of the 17th IEEE International
EDOC 2013 Conference Workshops, pages 79-88, 2013.

Markus Voelter and Vaclav Pech. Language modularity with the mps language
workbench. In 34th International Conference on Software Engineering (ICSE),
pages 1449-1450. IEEE, 2012.

Thomas De Vylder. Feature modelling: A survey, a formalism and a transformation
for analysis. University of Antwerp.

