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Abstract. In this paper, we present the learning strategies and fea-
ture extraction techniques that were applied by the IBM Research Aus-
tralia team to the Medical Clustering challenge of ImageCLEF 2015.
The challenge is to automatically annotate and categorize X-ray images
into head-neck, body, upper-limb, lower-limb and foreign object cate-
gories. Our proposed methodology and details of experiments for each
submitted run has been discussed in this paper, followed by final results
provided by the competition organizers. The key components used in our
submissions are based on sparse coding of SIFT, local binary patterns
and multi-scale local binary patterns with spatial pyramid, advanced
fisher vector, various SVM kernels, and an effective fusion methodol-
ogy, to ensure high classification accuracy. Comprehensive experiments
demonstrate the effectiveness of the proposed system. Six out of the ten
submissions of IBM Research were among the top 10 best results, where
two of our submissions outperformed all other submissions, therefore the
team has achieved the first place in the competition.
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1 Introduction

ImageCLEF medical clustering task [0] is a new category in ImageCLEF 2015 [0].
The objective of this task is to categorize digital X-ray images into four clusters:
head-neck, upper-limb, body, and lower-limb [0]. X-ray is the most common med-
ical image modality as it accounts for one third of the the radiographs taken in
a typical radiology department [0]. Automatic categorization of medical images
has a number of applications including efficient retrieval, archiving, and patient
similarity matching. For example, for search and retrieval task, the image needs
to be pre-classified. However, X-ray image classification is a challenging task due
to variation in the patients location, exposure, subject motion and the presence
of artifacts and foreign objects. In this work, we present a X-ray annotation and
categorization system which accurately performs in presence of such artifacts.



Existing methods on X-ray image classification are based on local patch fea-
tures such as local binary pattern (LBP) histogram, edge histogram and SIFT
[0]. Recently, the choice of the local feature has gone beyond the traditional local
patch descriptor, and higher dimensional representation such as pooled coding
vectors and multi-resolution feature modeling have shown to improve the per-
formance. In this paper, we investigated several feature extraction techniques
based on higher level feature coding of local feature and multi-resolution anal-
ysis for X-ray image clustering challenge in ImageClef 2015. The rest of the
paper is organized as follows: Section describes the methodologies applied for
the medical clustering task. Section discusses the experimental setup, which has
been applied for training and our internal evaluation, and the comparison of our
methods before submission. Section reviews the submission runs and presents
the results. Finally, Section concludes the paper.

2 Feature Extraction and Learning Methodologies

2.1 Multi-scale LBP Histogram with Spatial Pyramid

LBP describes gray-scale local texture of the image by detecting local patterns
between adjacent pixels. For example, original LBP operator labels the pixels
of an image by thresholding the 3 x 3- neighborhood of each pixel with the
center value and considering the result as binary string resulting in 256 different
patterns. In multi-scale LBP (MSLBP) [0], comparison operator between single
pixels in LBP is simply replaced with comparison between average gray-values
of sub-regions where each sub-region is a square block containing neighboring
pixels, and the size of the square block is governed by the scale of LBP. Once the
MSLBP values are computed for each pixel, a feature vector for a given image
region can be computed as 256 dimensional histogram of the LBP values inside
the region. However, such global histogram does not encode spatial information
that may be crucial for image recognition task.

In this paper, we compute the MSLBP histogram at multiple scales of spatial
resolution by partitioning the image into increasingly smaller overlapping sub-
regions and computing the MSLBP histogram inside each region. The resulting
spatial pyramid has shown improvements in the performance of image classifi-
cation tasks. We computed LBP histogram at two levels of spatial pyramid. Let
w and h denote the width and the height of the image. In the first level, the
MSLBP histogram is computed in a block where the block covers the entire im-
age. In the second level, MSLBP histogram is computed across the 9 overlapping
blocks with size of w/2 x h/2 which are obtained by moving a block along = axis
with increment of w/4, and along y-axis with increment of h/4. Therefore, the
total number of blocks is 10. The MSLBP feature computed in all the spatial
pyramid blocks are then concatenated to form a single feature vector which we
name as MSLBP-SP.



2.2 Sparse Coding with Max-pooling and Spatial Pyramid

Sparse coding is a popular approach for adaptively learning feature representa-
tions. Given a set of input signals {xi}ﬁvzl, where x € R™, the goal is to find
the sparse approximation over a dictionary D in R™**, with k columns referred
to as basis vectors, so that a linear combination of basis vectors from D recon-
structs the signal x. Rather than using pre-defined dictionaries, sparse coding
algorithms aim to learn a dictionary of basis functions. The objective function
of sparse coding is stated as:
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where A is a regularization parameter and the [y penalty ensures sparse so-
lution. A general approach to minimize the objective function is to alternate
between the two variables, i.e., minimizing over one while keeping the other
fixed. In this paper, we use on-line algorithm based on stochastic approximation
which minimizes the sequential quadratic approximation of the expected cost
[0]. Once the dictionary D is trained, the sparse representation « of a feature
vector x can be computed by minimizing the following objective function:
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For any image represented by a set of M features, we can compute a single
feature vector using a pooling function. For example, the pooling function defined
as average function results in a histogram feature. In this paper, we define the
pooling function as the maz-pooling function over the absolute sparse codes:
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where z; is the jthelement of the final pooled vector z which is compact repre-
sentation of the given image region. The maz-pooling process is well established
by biophysical evidence is visual cortex [0] and is empirically justified by many
image recognition algorithms.

Given an image, we first divide the image into 10 spatial pyramid blocks
in a similar manner described in Section and compute the local features in
each block. The sparse representation of the local features is then computed in
each block using the method described above. In this paper, we investigate two
types of local feature for sparse coding: (a) dense SIFT(b) dense MSLBP. Dense
SIFT is a faster version of SIFT where the SIFT descriptors with fixed scale
and orientation are computed in densely sampled locations, inside a given image
block. In our implementation SIFT descriptor is computed on a 100 x 100 patches
densely sampled in a given block on a grid with step size of 30 x 30. Similarly, we
compute the MSLBP described in Section in 100 x 100 patch densely sampled
in a given block on a grid with step size of 30 x 30.

The sparse coded features computed in spatial pyramid taking dense SIFT
as local features is named SC-DenseSIFT-SP and the sparse coded features



computed in spatial pyramid by taking dense MSLBP features is named SC-
DenseMSLBP-SP.

2.3 Fisher Kernel Feature Coding

Fisher Kernel [0,0] feature encoding is one of bag-of-word model [0,0] and re-
cent evaluation [0] shows this encoding method achieved best results in many
cases. Fisher Kernel encodes the distribution information of the feature points
which can separate the image specific information from the noisy local features.
Fisher Kernel encoded features can be represented using a linear model which is
computationally efficient.

Let X = {1, --,zn} be the set of N local features extracted from an image
I and wuy () is a probability density function which models a generative process
in the feature space. The image I can be described by the gradient vector of log
likelihood with respect to the model parameters A:

1
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Let F) is the Fisher information matrix of u), a natural kernel on these
gradients is
K(X,Y)=G{ Fy'GY, (5)
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As F), is symmetric and positive definite, it can be decomposed as,

Fy=L\Ly, (7)

and the kernel K(X,Y) is defined as a dot-product between normalized vec-
tors, called Fisher vectors:

g3 = L\Gx. (8)

Linear classifiers typically consume less time than non-linear ones in train-
ing and testing phases. Learning a kernel classifier using the Fisher kernel is
equivalent to learning a linear classier on the Fisher vectors G5 .

The probability density function uy in Fisher Vecter encoding is presented
using a Gaussian Mixture Model (GMM), defined as

K
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The GMM is trained on local features of a large image set using Maximum
Likelihood (ML) estimation. The parameters of the trained GMM are denoted
as,
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where {m, u, X'} are the prior probability, mean vector and diagonal covariance
matrix of the Gaussian mixture respectively. This GMM is used to describing low
level features X = {x1,- -,z N} extracted from an image I. The soft assignments
of the descriptor x; to the kth Gaussian component -, is defined as
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Fisher vector (FV) for X is denoted as ¢(X) = {GX, G-+, G . GX }. G,
and G,, is defined as:

(11)
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Where oy, is the square root of the diagonal values of Y. When increasing the
number of Gaussian kernels, the Fisher vectors gets sparser, and the distribution
of the features in a given dimension gets closer to zero. We apply a combination
of power normalization and L, normalization to each Fisher vector descriptor.
In z-dimension of the Fisher vector ¢, the power normalization is defined as,

f(z) = sign(z)|z]%, (14)

where 0 < o < 1 is a parameter of the normalization and we choose @ = 0.5 in
all the experiments. Subsequently, the Fisher vectors are Lo normalized.

2.4 Visual global descriptors

This section explains four of our submissions which were based on extracting
global visual features [0], and using SVM and Random Forest, two of the very
common yet effective classification techniques. For visual features we extracted
Edge Histogram and Local Binary Patterns (LBP) using pyramid spatial gran-
ularity. The spatial pyramid refers to extracting the entire image as first level
then in the second level in 2x2 grids followed by (3x3) grids in the third level.
All grid blocks are eventually concatenated.

Edge Histogram: We consider 8 edge direction bins and 8 edge magnitude
bins, based on a Sobel filter (64-dimensional).

Local Binary Patterns: We also used LBP histograms of 8-bits local binary
patterns, each of which is generated by comparing the gray-scale value of a pixel
with those of its 8 neighbors in circular order, and setting the corresponding
bit to 0 or 1, accordingly. A pattern is called uniform if it contains at most
two bitwise transitions from 0 to 1. The final histogram for each region in our
granularity contains 59 bins; 58 for uniform patterns and 1 for all the non-uniform
patterns.



We investigated various classifiers implemented in Weka [0], including: Deci-
sion Tree, Support Vector Machine (RBF Kernel, Poly kernel, Normalized Ploy
kernel and Puk kernel), Random Forest, Logistic Model Tree (LMT) and Naive
Bayesian. The validation results suggested that SMO (with normalized poly
kernel) and Random forest were the best choice with respect to classification
performance.

2.5 Fusion of Multiple Methods

In an attempt to build a strong classifier by leveraging various learning methods
explained previously, we have applied two fusion methods: early fusion and late
fusion .

Early feature fusion: In early fusion, we concatenated three types of fea-
tures to form a single feature vector before classification. Specifically, we con-
catenated MSLBP-SP (described in Section ), SC-DenseSIFT-SP (described in
Section ) and SC-DenseMSLBP-SP (described in Section ).

Late fusion: In late fusion, we combine the classification scores of the classi-
fication models trained on the feature described in Section - . Let a model k& pro-
vides a confidence score sf ; for each image i and for each class j. We apply opti-
mization to get the final confident score as the weighted sum: S; ; = >, w¥x sf,j,
using 10-fold cross validation. At each fold, we select the model with the high-
est accuracy and tune the weight to get the best combined accuracy. The final
weight parameters have been used to calculate the confidence score on the test
set.

3 Experiments

In this section we explain the detail of experiments and our performance evalu-
ation methodology.

Dataset: The training set provided for the medical clustering task contains
500 images where each image belongs to one of five categories: head-neck, upper-
limb, body, lower-limb and true negative (foreign objects), and each category has
100 images. An independent test set containing 250 images without any class
information was also provided.

Model Tuning: In order to tune the classification models and identify the
best parameter values, we used 10 fold cross validation. At each fold we train on
90% of the data and evaluate the models on the remaining 10%. This process is
repeated 10 times, each time using different train/test partition. We use average
F' — Score among all the validation runs to select the best classification model
for each feature representation.

Testing: The best classification model trained on each feature is used to
evaluate on the test set. The list of submitted runs is described in Section and
the performance is reported in Table .



Table 1. Results of the runs in the test set. Three metrics (Exact Match, Any Match
and Hamming distance) have been used to evaluate the accuracy of submissions. Two of
our runs which achieved the highest scores across all submitted runs in the competition,
have been highlighted by bold font in the table.

l [Exact Match[Any Match[Hamming distancel

Runl 0.752 0.864 0.863
Run2 0.695 0.840 0.889
Run3 0.672 0.812 0.874
Run4 0.599 0.724 0.838
Runb 0.692 0.832 0.896
Run6 0.692 0.732 0.755
Run7 0.470 0.568 0.835
Run8 0.603 0.708 0.778
Run9 0.510 0.616 0.849
Run10 0.689 0.820 0.890

4 Submitted Runs and results

Run1: Early fusion of three features: (a) MSLBP-SP (described in Section ) (b)
SC-DenseSIFT-SP (described in Section ) (¢) SC-DenseMSLBP-SP (described
in Section ). SVM classifier with homogenous kernel map and Chi-square kernel
is used and multi label classification is employed.

Run2: Same as Runl, except that a single label classification is employed.

Run3: MSLBP-SP feature described in Section , and SVM classifier with
homogenous kernel map and Chi-square kernel is used.

Run4: SC-DenseMSLBP-SP described in Section , with SVM classifier with
homogenous kernel map and Chi-square kernel is applied.

Run 5: Advanced feature encoding explained in : First, we extracted dense
SIFT feature, then applied Fisher Kernel encoding, by learning Mixture of Gaus-
sian (GMMs). As a result, each image has represented by a Fisher Vector. In the
next step, we trained linear SVM on the training set and applied it on test set.

Run 6: Edge Histogram for visual feature descriptor and SMO as classifica-
tion: in this run, we used global edge histogram using spatial pyramid technique
and then SMO, normalized poly kernel, which has been explained in section .

Run 7: Edge Histogram for visual feature descriptor and Random Forest
as classification: in this run, we used the same feature extracted in run 6, and
Random Forest as the classification method.

Run 8: LBP Histogram for visual feature descriptor and SMO as classifica-
tion: in this run, we extracted LBP histogram using spatial pyramid technique.
SMO was used as classification method.

Run 9: LBP Histogram for visual feature descriptor and Random Forest as
classification: Similar to run 8, we used LBP global features, followed by training
a Random Forest.

Run 10: This run was presented from the late fusion model as explained in
section .



5 Conclusion

In this paper, we described feature extraction and learning methodologies and
the fusion strategy applied by the IBM Research Australia team to the medical
clustering challenge of ImageCLEF 2015. We utilized advanced feature extraction
methods to extract local and global features, as well as advanced feature encoding
and classification techniques. We also applied early fusion of low-level features,
and late fusion of the results of all trained classifier. Overall, six out of the
ten submissions of IBM Research team were among the top 10 best results.
All runs has been evaluated based on three metrics: exact match, any match
and hamming distance metrics. Two of our ten submitted runs demonstrated
outstanding results, and outperformed all other submissions across all teams
participating in the competition. The early fusion of MSLBP-SP, SC-DenseSTFT-
SP and SC-DenseMSLBP-SP with homogeneous kernel map and Chi-Square
kernel based SVM classification achieved highest exact match and any match,
whereas Fisher vector resulted in highest hamming distance.
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