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Abstract. This paper describes our participation in the product search task of
the CLEF 2015 LL4IR Lab. Working within a generative language modeling
framework, we represent products as semi-structured documents. Our focus is
on establishing a probabilistic mapping from query terms to document fields.
We present and experimentally compare three alternatives. Our results show that
term-specific mapping is beneficial. We also find evidence suggesting that esti-
mating field mapping priors based on historical clicks outperforms the setting
where the priors are uniformly distributed.

1 Introduction

Online shopping has become a common practice and one of the most popular activities
people perform on the Internet. Its success can be credited to ease and convenience,
large selection of products, 24/7-availability, low pricing, just to mention some of the
benefits. Just with any other website or online service, effective information retrieval
systems are indispensable for e-commerce sites. Webshops need to offer search func-
tionality that makes their available products easy to find. Providing customers with a
positive shopping experience can increase sales, and is thereby essential to success of
the business. Users are accustomed to the “single search box” paradigm and expect the
search engine to understand their information need. In this paper we address the task of
ad-hoc product search, defined as follows: given a keyword query, return a ranked list
of products from a product catalog that are relevant to the query.

Products are described by a number of attributes, such as name, brand, description,
categories, and so on. These attributes have a specific semantic meaning (one that can
even be known a priori), albeit the amount of text associated with each is typically
rather small. Recognizing for each query term which of the product attributes (if any) is
targeted, therefore, is believed to lead to improved retrieval performance. Our objective
in this work is to develop, implement, and evaluate methods that establish a mapping
from individual query terms to specific product fields. We represent products as semi-
structured documents (following the predominant approach to entity retrieval [1]) and
employ the Probabilistic Retrieval Model for Semistructured Data (PRMS) [2], a model
that is known to perform well under conditions where the collection is homogeneous
and fields have distinctive term distributions [1]. Our setting is exactly like that. Given
the inherent uncertainty, the term-field mapping is represented as probability distribu-
tion over fields. We decompose the estimation into term-field probability and prior field
probability components and propose three specific instantiations of the PRMS model.
We evaluate our approaches and report results using the LL4IR platform.



Table 1. Fields in our index.

Field Description

brand Product’s brand
category Leaf level product category
characters Characters associated with the product (e.g., Barbie)
contents Catch-all contents field
description Full textual description
product name Product’s name
queries Queries that led to the product
main category Top level product category
short description Short textual description

2 Task and Data

We address the task of ranking products (from a product catalog) in response to a (short)
keyword query. In this section we resort to a brief description of what and how we used
from the living labs API in our participation. For a detailed description of the task and
setup, we refer to the LL4IR Lab overview paper [5].

For each query, the living labs platform makes a set of candidate products avail-
able via the doclist API endpoint. For each of these products, the details can be
requested via the doc API endpoint, which provides a product description in the form
of key-value pairs. We built a single Lucene index from all unique products made avail-
able to us (i.e., products from all doclists) with the fields shown in Table 1. Note that
contents is a catch-all field that does not come from the API; it is the concatenation
of all field content associated with the product, created at indexing time. In addition,
we also used the historical API endpoint to obtain aggregated click-through rate
(CTR) for the training queries.

We produce rankings offline using the retrieval framework and field-mapping meth-
ods described in Sections 3 and 4. Once uploaded to the API, these are interleaved with
and compared against the site’s production ranking system. The numbers reported in
Section 5 are obtained via the outcome API endpoint.

3 Retrieval Framework

We base our approach on a generative language modeling framework. Language mod-
els provide a transparent and effective means for incorporating structural cues. They are
especially appropriate under circumstances where training data is scarce. Our goal with
this section is merely to present a brief introduction to the general framework and no-
tation we use, thereby making the paper self-contained; for a more detailed description
of these models we refer the reader to [1].

3.1 Standard Language Modeling Approach

The standard language modeling approach works as follows. Given a query q and a
document d, the relevance of the document with regard to the query can be expressed



as the conditional probability P (d|q). Using Bayes theorem, P (d|q) is rewritten as
shown in Eq. 1 below. Since the P (q) is identical for all candidate documents, it can
be safely discarded. Thus, the posterior probability P (d|q) is given by the product of
query generation probability P (q|d) and document prior probability P (d):

P (d|q) = P (q|d)P (d)
P (q)

≈ P (q|d)P (d). (1)

Assuming uniform document priors, the ranking of documents is then proportional to
P (q|d). The simplest solution to estimating this probability is by assuming a bag-of-
words document representation. We let θd be an unigram document language model
where P (t|θd) expresses the probability of term t given the document. Ranking docu-
ments is done according to the probability that a query q is observed during repeated
random sampling from the model of document d (where n(t, q) is the number of times
t occurs in q):

P (q|θd) =
∏
t∈q

P (t|θd)n(t,q). (2)

To estimate P (t|θd) we use a linear combination of maximum-likelihood document and
collection language models (i.e., employ Jelinek-Mercer smoothing):

P (t|θd) = (1− λ)PML(t|d) + λPML(t|C), (3)

where P (t|d) and P (t|C) are relative frequencies of term t in the document and in the
collection, respectively, and λ is the smoothing parameter.

3.2 Mixture of Language Models

The standard language modeling approach treats the document as “flat text,” and is not
able to make use of various document fields. An extension called Mixture of Language
Models (MLM) is proposed by Ogilvie and Callan [3], where a separate language model
is calculated for each document field, and these field language models are then com-
bined into a single document-level representation. Under this approach the document
language model is taken to be:

P (t|θd) =
∑
f∈F

αfP (t|θdf
), (4)

where f is a field from the set of available fields F , αf is the relative importance of
the field such that

∑
f∈F αf = 1, and θdf

is a field-specific language model. The field
language model can be estimated the same way as the document language model, except
that term occurrences are considered only within the given field (this is indicated by the
f subscript):

P (t|θdf
) = (1− λf )PML(t|df ) + λfPML(t|Cf ). (5)

Ogilvie and Callan [3] suggest to set the field weights proportional to the length of the
fields or to their individual retrieval performance. We also use the latter approach in one
of our methods. We set the smoothing parameter to be the same for all fields: λf = 0.1.



Table 2. Overview of field mapping methods.

Method P (t|f) P (f)

Method 1 1
|F | ∝ NDCGf

Method 2 PML(t|Cf )
1

|F |
Method 3 PML(t|Cf ) ∝ NDCGf

3.3 Probabilistic Retrieval Model for Semistructured Data

Instead of using a fixed field weight that is the same for all query terms, Kim et al.
[2] propose the use of mapping probabilities. In their approach, called Probabilistic
Retrieval Model for Semistructured Data (PRMS), αf in Eq. 4 is replaced with P (f |t):
the probability of term t being mapped to field f . The estimation of the document
language model then becomes:

P (t|θd) =
∑
f∈F

P (f |t)P (t|θdf
). (6)

For estimating the mapping probabilities we again make use of Bayes’ theorem:

P (f |t) = P (t|f)P (f)
P (t)

=
P (t|f)P (f)∑

f ′∈F P (t|f ′)P (f ′)
, (7)

where P (t|f) can be estimated conveniently by PML(t|Cf ), and P (f) is a prior map-
ping probability. We shall present multiple alternatives for setting the components of
Eq. 7, P (t|f) and P (f), in the next section.

4 Estimating Mapping Probabilites

We present three specific instantiations of the PRMS model, shown in Table 2, that
only differ in the estimation of the mapping probability, given in Eq. 7. This formula
has two components that need to be defined: the term-field probability P (t|f) and the
field prior P (f). Let us point out that MLM can be seen as a special case of PRMS,
where P (t|f) = 1/|F | and P (f) = αf .

The probability of a term occurring in a given field, P (t|f), can be taken uniform
(i.e., 1/|F |) or calculated using the term counts in field f across the whole collection,
PMLP (t|Cf ), as it is done in the original PRMS approach [2].

For the field prior we consider a uniform and a non-uniform setting. In case of
the latter, we capitalize on the fact the we have access to training data that can be
used for evaluating the retrieval performance of each field individually. Specifically, we
rank training queries based on P (q|θdf

) and measure retrieval performance in terms of
NDCG, averaged over all training queries (denoted as NDCGf ). The gain of a doc-
ument is set to historical CTR (as provided by the historical feedback API endpoint).
P (f) is then set proportional to NDCG as follows:

P (f) =
NDCGf∑

f ′∈F NDCGf ′
. (8)



Table 3. Field priors based on individual field performance.

Field name NDCGf P (f)

Brand 0.0684 0.0240
Product name 0.5632 0.1989
Characters 0.3792 0.1339
Category 0.4305 0.1520
Description 0.3919 0.1384
Short description 0.2986 0.1054
Contents 0.6987 0.2468

Table 4. Offline results for the training queries. Best scores for each metric are in boldface.

Method MAP MRR NDCG

Method 1 0.8118 0.9948 0.7045
Method 2 0.7916 0.9948 0.7012
Method 3 0.7997 0.9948 0.7026

Table 3 shows the individual performances and the estimated priors for the fields in our
index. Recall that contents is a catch-all field, containing all content available for
the given product.

5 Results

We report on two sets of experiments: traditional, test collection based offline results on
the training queries and online results collected via the living labs platform on the test
queries.

5.1 Training Queries

We use historical CTR as ground truth. For binary relevance (MAP and MRR) we con-
sider each product with at least 0.001 CTR as relevant; for graded relevance (NDCG)
we use CTR as the gain value. We note that for Methods 1 and 3 we train and test on
the same set of queries. The numbers reported here are only meant to show how well
the models can be fitted to the data.

Table 4 presents the results. We find that all three methods perform very similarly for
all three metrics. While they achieve virtually perfect MRR, i.e., the first ranked results
is always a relevant one, there is room for improvement in terms of MAP and NDCG.
Our CTR-based ground truth is likely to be biased based on the site’s existing ranking.
Therefore, a comparison against the production system would reveal more about the
differences between our methods; this is exactly what follows next.



Table 5. Online results for the test queries. In addition to outcome, we also report on the total
number of impressions (#I) and percentage of wins (%W), losses (%L), and ties (%T). Best scores
for each metric are in boldface.

Method Run ID
Round #1 Round #2

Outcome #I %W %L %T Outcome #I %W %L %T

Method 1 UiS 0.2827 699 7.7 19.6 72.7 0.4118 731 11.5 16.4 72.1
Method 2 Mira 0.3413 725 9.8 18.9 71.3 0.4389 757 10.4 13.3 76.2
Method 3 Jern 0.3277 665 8.7 17.9 73.4 0.4795 767 10.7 11.6 77.7

5.2 Test Queries

We submitted three rankings corresponding the Methods 1–3, as shown in Table 5. The
main evaluation metric is outcome, which is defined as:

outcome =
#wins

#wins + #losses
, (9)

where the number of wins and losses are measured against the site’s production ranking
system. Additionally, we report on the total number of impressions and the ratio of
wins, losses, and ties.

Before discussing our observations, it is important to mention that the way inter-
leaving with the production system is performed has changed from Round #1 to Round
#2, to deal correctly with unavailable products (as explained in [4]). It is therefore be-
lieved that the Round #2 results are more reliable. Nevertheless, there are some open
questions, such as how many impressions are needed before one can draw firm conclu-
sions, and whether the results obtained in Round #2 are an accurate reflection of the
performance of our methods.

It is immediately apparent that the Round #2 numbers are higher, due to the afore-
mentioned change to interleaving. Outcomes for Round #1 are above the (corrected)
expected outcome of 0.28, while for Round #2 they are below the expected outcome
of 0.5. For neither round were we able to outperform the organizers’ baseline (with
an outcome of 0.4691 and 0.5284 for Rounds #1 and #2, respectively), which clearly
shows that there is considerable room for improvement.

Concerning the comparison of Methods 1–3, we make the following observations.
All methods received about the same number of impressions, the relative difference
between them is within 10%. In over 70% of the cases there is a tie between the exper-
imental and production rankings; this is the same for all three methods. It is clear that
Method 1 is the worst performing out of the three; it is expected, as this method is es-
sentially MLM, which performs the field mapping independent of the query terms. As
for Method 2 vs. 3, the results are mixed. In Round #1 Method 2 performed slightly bet-
ter (+4% over Method 3), while in Round #2 Method 3 came first (+9% over Method
2). We further observe that Method 3 has the most ties with the production system and
it is also the one with the least number of losses against it. Based on these results we
can safely conclude that term-specific mapping is beneficial (Method 1 vs. Methods 2
and 3). There is also evidence suggesting that non-uniform field priors are preferred and
that historical CTR offers a simple and intuitive way of setting them (Method 2 vs. 3).



Table 6. Field mapping probabilities.

Query Term Field name M1 M2 M3

baba baba

product name 0.1989 0.2509 0.2713
contents 0.2468 0.2592 0.3509
category 0.1520 0.3723 0.3024
short desc 0.1054 0.0658 0.0356
desc 0.1384 0.0516 0.0391

pötyi pötyi
product name 0.1989 0.1067 0.0877
contents 0.2468 0.8820 0.9060
desc 0.1384 0.0109 0.0060

minnie minnie

product name 0.1989 0.0860 0.1156
contents 0.2468 0.0860 0.1479
characters 0.1339 0.8102 0.7214
short desc 0.1054 0.0117 0.0080
desc 0.1384 0.0072 0.0068

bogyó és babóca

bogyó

product name 0.1989 0.0610 0.0861
contents 0.2468 0.0633 0.1118
desc 0.1384 0.0034 0.0034
short desc 0.1054 0.0062 0.0044
characters 0.1339 0.8657 0.7941

és

product name 0.1989 0.0874 0.1218
contents 0.2468 0.0984 0.1714
desc 0.1384 0.2578 0.2514
short desc 0.1054 0.2316 0.1613
characters 0.1339 0.3246 0.2939

babóca

product name 0.1989 0.0594 0.0823
contents 0.2468 0.0875 0.1514
desc 0.1384 0.0034 0.0033
short desc 0.1054 0.0061 0.0042
characters 0.1339 0.8434 0.7587

6 Analysis

In our analysis section we ask the following question: How different are the mappings
created by the different methods? We answer this both qualitatively and quantitatively.
For the former, Table 6 shows the estimated mapping probabilities for a number of train-
ing queries; we can see that these are indeed different. As for the latter, Table 7 presents
the Kendall’s rank correlation coefficient (τ ); the numbers are averages computed over
all queries (both training and test). We observe that the correlation between all three
methods is high and that Methods 2 and 3 are more similar to each other than they are
to Method 1. The level of similarity (τ = 0.95) between Methods 2 and 3 explains why
it is so difficult to decide a winner. Our findings concerning Method 2 vs. 3 (uniform
vs. non-uniform field priors) should therefore be taken with a grain of salt.



Table 7. Similarity of rankings measured by the Kendall rank correlation coefficient (τ ).

Method 2 Method 3

Method 1 0.867 0.864
Method 2 – 0.950

7 Conclusions

We have described our participation in the product search task of the CLEF 2015 LL4IR
Lab. Our focus has been on various field mapping approaches in a language model-
ing framework, which we compared experimentally. We have shown that using term-
specific mapping has a positive effect on retrieval performance. We have also presented
evidence suggesting that estimating field mapping priors based on historical clicks out-
performs the setting where the priors are uniformly distributed. While we were able to
observe interesting differences between our methods, further work is needed to be able
to outperform the site’s production ranking system.
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