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Abstract. In this paper we summarize our experiments in the Image-
CLEF 2015 Scalable Concept Image Annotation challenge. The RUC-
Tencent team participated in all subtasks: concept detection and local-
ization, and image sentence generation. For concept detection, we ex-
periments with automated approaches to gather high-quality training
examples from the Web, in particular, visual disambiguation by Hierar-
chical Semantic Embedding. Per concept, an ensemble of linear SVMs
is trained by Negative Bootstrap, with CNN features as image represen-
tation. Concept localization is achieved by classifying object proposals
generated by Selective Search. For the sentence generation task, we adopt
Google’s LSTM-RNN model, train it on the MSCOCO dataset, and fine-
tune it on the ImageCLEF 2015 development dataset. We further develop
a sentence re-ranking strategy based on the concept detection informa-
tion from the first task. Overall, our system is ranked the 3rd for concept
detection and localization, and is the best for image sentence generation
in both clean and noisy tracks.
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1 Introduction

This year we participated in all the subtasks, i.e., concept detection and localiza-
tion and image sentence generation, in the ImageCLEF 2015 Scalable Concept
Image Annotation challenge. In addition to the 500k web image set (webupv2015
hereafter) and the 2k develop set (Dev2k) provided by the organizers [1], we
leverage a number of external resources, listed below:

– Task 1: WordNet, ImageNet [2], Flickr images, a pretrained Caffe CNN [3],
and a pretrained HierSE model [4].
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– Task 2: MSCOCO [5], a pretrained VGGNet CNN [6], and a pretrained
word2vec model [7].

Next, we introduce in Section 2 our concept detection and localization system,
followed by our image sentence generation system in Section 3.

2 Task 1: Concept Detection and Localization

We develop a concept detection and localization system that learns concept clas-
sifiers from image-level annotations and localizes concepts within an image by
region-level classification, as illustrated in Fig. 1. Compared with our earlier sys-
tems [8,9], this year we make two technical improvements for concept modeling.
First, we replace bag of visual words features by an off-the-shelf CNN feature,
i.e., the last fully connected layer (fc7) of Caffe [3]. Second, we employ Hierar-
chical Semantic Embedding [4] for concept disambiguation, which is found to be
effective for acquiring positive examples for some ambiguous concepts such as
‘mouse’, ‘basin’, and ‘blackberry’.
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Fig. 1. An illustration of the RUC-Tencent concept detection and localization system.

2.1 Concept Modeling

Positive Training Examples Since hand labeled data is allowed this year, we
collect positive training examples from multiple sources of data, including

1. ImageNet. For 208 of the 251 ImageCLEF concepts, we can find labeled
examples from ImageNet [2].

2. webupv2015. It consists of 500K web images provided by the organizers [1]

3. flickr2m. We start with the 1.2 million Flickr image set from [10], and extend
it by adding more Flickr images labeled with the ImageCLEF concepts,
resulting in a set of two million images.



Since the annotations of webupv2015 and flickr2m are noisy, per concept we
collect its positive training examples by a two-step procedure. In the first step,
we conduct tag-based image search using tags of the concept as the query to
generate a set of candidate images. For webupv2015, an image is chosen as a
candidate as long as its meta data, e.g., url and query logs, overlap the tags. In
the second step, these candidate images are sorted in descending order in terms
of their relevance to the concept, and the top-n ranked images are preserved
as the positive training set. To compute the relevance score between the given
concept and a specific image, we embed them into a common semantic space
by the Hierarchical Semantic Embedding (HierSE) algorithm [4]. Consequently,
the cross-media relevance score is computed as the cosine similarity between the
embedding vectors.

Since HierSE takes the WordNet hierarchy into account, it can resolve se-
mantic ambiguity by embedding a label into distinct vectors, depending on its
position in WordNet. Consider the label ‘basin’ for instance. In the context of
ImageCLEF, it is ‘basin.n.01’, referring to a bow-shaped vessel. On the other
hand, it can also be ‘basin.n.03’, meaning a natural depression in the surface of
the land. In HierSE, a label with a given sense is represented by a convex com-
bination of the embedding vectors of this label and its ancestors tracing back to
the root. Fig. 2 shows the top-ranked images of ‘basin’ from flickr2m, returned
by the tag relevance (tagrel) algorithm [11] and HierSE, respectively.

Given the HierSE ranked images per concept, we empirically preserve the
top n = 1000 images as positive training examples. Since the number of genuine
positives varies over concepts, this year we also consider an adaptive selection
strategy. We train an SVM model using the top 20 images as positives and 20
images at the bottom as negatives. The previously ranked images are classified
by the model and labeled as positive if the classification scores exceed 0. We
denote this strategy as HierSE + SVM.

Negative Bootstrap To effectively exploit an overwhelming number of (pseudo)
negative examples, we learn an ensemble of linear SVMs by the Negative Boot-
strap algorithm [12]. The base classifiers are trained using LIBLINEAR [13].
The classifier ensemble is compressed into a single model using the technique
developed in [14] so that the prediction time complexity is independent of the
ensemble size, and linear w.r.t. the visual feature dimension.

To evaluate the multiple methods for selecting positive and negative exam-
ples, we split the ImageNet set into two disjoint subsets, imagenet-clef15train
and imagenet-clef15test, which contain positive examples for the 208 Image-
CLEF concepts. Using imagenet-clef15test as the test set, the performance of the
individual methods is summarized in Table 1. For webupv2015, the combination
of HierSE + SVM and Negative Bootstrap performs the best. For flickr2m, the
combination of HierSE and Negative Bootstrap performs the best. Still, there is
a substantial gap between the model trained on auto-selected examples (MAP
0.375) and the model trained on hand labeled examples (MAP 0.567). So for
the 208 concepts, we combine all the models trained on imagenet-clef15train,



(a) basin by tagrel

(b) basin by HierSE

Fig. 2. Images of ‘basin’ retrieved by (a) tagrel and (b) HierSE, respectively. The
HierSE results are more relevant to the ImageCLEF concept, i.e., a bow-shaped vessel.

Table 1. Evaluating methods for positive and negative training example selection.
Test set: imagenet-clef15test. Methods are sorted in descending order by MAP.

Data source Positive examples Negative examples MAP

flickr2m HierSE Negative Bootstrap 0.375

flickr2m tagrel Negative Bootstrap 0.362

flickr2m HierSE random sampling 0.356

flickr2m HierSE + SVM Negative Bootstrap 0.350

webupv2015 HierSE + SVM Negative Bootstrap 0.338

flickr2m HierSE + SVM random sampling 0.337

webupv2015 HierSE Negative Bootstrap 0.333

webupv2015 Hierse + SVM random sampling 0.314

webupv2015 Hierse random sampling 0.278

imagenet-clef15train Manual Negative Bootstrap 0.567

imagenet-clef15train Manual random sampling 0.547

webupv2015, and flickr2m, while for the other 43 concepts, we combine all the
models trained on webupv2015 and flickr2m. Although learned weights are found
to be helpful according to our previous experiences [8,15], we use model averag-
ing in this evaluation due to time constraints.

2.2 Concept Localization

Object Proposal Generation For each of the 500k images, we use Selective
Search [16] to get a number of bounding-box object proposals. In particular, the
image is first over-segmented by the graph-based image segmentation algorithm



[17]. The segmented regions are iteratively merged by hierarchical grouping as
depicted in [16]. As the CNN feature is extracted per bounding box, the number
of chosen object proposals is set to 20 given our computational power.

Detection Given an image and its 20 object proposals, we classify each of
them using the 251 concept models, and label it with the concept of maximum
response. Notice that for each concept, we have two choices to implement its
model. One choice is HierSE, as it was developed for zero-shot learning, and
is thus directly applicable to compute cross-media relevance scores. The other
choice is linear SVMs trained from the selective positives combined with Negative
Bootstrap. HierSE is the same as used for positive example selection, while the
SVMs used here are distinct from the SVMs in Section 2.1.

To reduce false alarms, we refine the detection as follows. For object proposals
labeled as the same concept, if their number is lower than a given Minimum
Detection threshold md (we tried 1, 2, and 3), they are discarded, otherwise we
sort them in descending order in terms of detection scores. We go through the
ranked proposals, preserving a proposal if its bounding box has less than 30%
overlap with the previously preserved proposals.

2.3 Submitted Runs

We submitted eight runs in the concept detection and localization task.

ruc task1 hierse md1 is our baseline run, directly using HierSE to compute
the relevance score between an object proposal and a concept, with the Minimum
Detection threshold md set to 1, namely no removal.

ruc task1 hierse md2 is the same as ruc task1 hierse md1, but with md = 2.

ruc task1 hierse md3 is the same as ruc task1 hierse md1, but with md = 3.

ruc task1 svm md1 uses SVMs for concept detection, with md = 1.

ruc task1 svm md2 is the same as ruc task1 svm md1, but with md = 2.

ruc task1 svm md3 is the same as ruc task1 svm md1, but with md = 3.

ruc task1 svm md2 nostar is the same as ruc task1 svm md2, but empiri-
cally thresholding the detection results of two concepts ‘planet’ and ‘star’, as
they tend to be over fired.



ruc task1 svm md3 nostar is the same as ruc task1 svm md3, but empiri-
cally thresholding the detection results of two concepts ‘planet’ and ‘star’.

Result Analysis The performance of the eight runs is shown in Fig. 3. We
attribute the low performance of the HierSE runs to the following two reasons.
First, HierSE is designed for zero-shot learning. It does not use any examples of
the ImageCLEF concepts. Second, the current implementation of HierSE relies
on the ImageNet 1k label set [18] to embed an image, while the 1k set is loosely
related with the ImageCLEF concepts. We can see that the Minimum Detection
threshold is helpful, improving MAP 0.5Overlap from 0.452 to 0.496.
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Fig. 3. Comparison of RUC-Tencent runs with other runs for the concept detection
and localization task. Performance metric: MAP 0.5Overlap.

3 Task 2: Image Sentence Generation

We have used the MSCOCO dataset [5] in addition to the Dev2k dataset pro-
vided by the organizers. For the Dev2k dataset, we split it into a training set
with 1,600 images, a validation set with 200 images, and a test set with 200
images.

3.1 Deep Models based Image Sentence Generation

Our image description system is built based on deep models proposed by Vinyals
et al. from Google [19]. The deep model contains the following key components:



Fig. 4. An illustration of the RUC-Tencent image sentence generation system.

(1) a Convolutional Neural Network (CNN) for image encoding, and (2) a Long-
Short Term Memory based Recurrent Neural Network (LSTM-RNN) for sen-
tence encoding, and (3) a LSTM-RNN for sentence decoding. In our system as
shown in Fig. 4, we use the pre-trained VGGNet [6] for CNN feature extraction.
The LSTM-RNN implementation is from the NeuralTalk project1. The encoding
LSTM-RNN and the decoding LSTM-RNN are shared.

In the training stage, we first train the LSTM-RNN on the MSCOCO dataset.
We then fine-tune the model on the ImageCLEF Dev2k dataset using a low
learning rate. Beam search is used in text decoding as in [19]. We finally re-rank
the hypothesis sentences utilizing the concept detection results. Given an image,
our system first generates k best sentences with confidence scores, meanwhile the
concept detection system from task 1 provides m best detected concepts with
confidence scores. If a detected concept appears in the hypothesis sentence, we
call it a matched concept. We then compute the ranking score for each hypothesis
sentence by matching the detected concepts with the hypothesis sentences as
follows:

RankScore(hypoSent) = θ · conceptScore+ (1 − θ) · sentenceScore, (1)

where conceptScore refers to the average of the confidence scores of all the
matched concepts in the hypothesis sentence (hypoSent), sentenceScore refers
to the confidence score assigned to the hypothesis sentence by the RNN model.
The parameter θ has been tuned on the Dev2k validation set. Fig. 5 showcases
some examples of how re-ranking helps the system produce better image descrip-
tions.

In the clean track, “golden” concepts, i.e., ground truth concepts by hand
labelling, are provided. So we set the confidence score for each concept as 1. In

1 https://github.com/karpathy/neuraltalk



(a)

(b)

Fig. 5. Examples illustrating sentence re-ranking. Candidate sentences are shown in
descending order on the left side, while the chosen sentences are shown on the right
side. In square brackets are Flickr tags predicted by the tag relevance algorithm [11].

this condition, if the top-ranked sentence does not contain any of the “golden”
concepts, the word in the top-ranked sentence with the closest distance to any
one of the “golden” concepts will be replaced by that concept. The word distance
is computed using a pre-trained word2vec2 model [7].

2 code.google.com/p/word2vec



3.2 Submitted Runs

We submitted six runs for the noisy track, and two runs for the clean track.

[Noisy track] RUC run1 dev2k is our baseline trained on the Dev2k dataset
without sentence re-ranking.

[Noisy track] RUC run2 dev2k rerank-hierse is trained on the Dev2k
dataset, using the 251 concepts predicted by HierSE [4] for sentence re-ranking.

[Noisy track] RUC run3 dev2k rerank-tagrel is trained on the Dev2k
dataset, using the Flickr tags predicted by the tag relevance algorithm [11] for
sentence re-ranking.

[Noisy track] RUC run4 finetune-mscoco is first trained on the MSCOCO
dataset, and then fine-tuned (with a relatively low learning rate) on the Dev2k
dataset, without sentence re-ranking.

[Noisy track] RUC run5 finetune-mscoco rerank-hierse is trained the
same way as for RUC run4 finetune-mscoco, using the 251 concepts predicted
by HierSE for sentence re-ranking.

[Noisy track] RUC run6 finetune-mscoco rerank-tagrel is trained the
same way as for RUC run4 finetune-mscoco, using the Flickr tags predicted by
the tag relevance algorithm for sentence re-ranking.

[Clean track] RUC run1 dev2k is trained on the Dev2k dataset, with sen-
tence re-ranking using the provided “golden” concepts.

[Clean track] RUC run2 finetune-mscoco is first trained on the MSCOCO
dataset and then fine-tuned on Dev2k, with sentence re-ranking using the pro-
vided “golden” concepts.

Result Analysis The performance of the noisy track runs is shown in Fig. 6(a).
We see that fine-tuning improves the system performance (RUC run1 dev2k
0.1659 versus RUC run4 finetune-mscoco 0.1759). Sentence re-ranking helps as
well (RUC run1 dev2k 0.1659 versus RUC run2 dev2k rerank-hierse 0.1781).

The performance of the clean track runs is shown in Fig. 6(b). It shows that
the LSTM-RNN model trained on MSCOCO and fine-tuned on Dev2k is less
effective than the model trained on Dev2k alone. This is somewhat contradictory
to the results of the noisy track. For a more comprehensive evaluation, Table 2
shows precision, recall, and F1 scores of the two runs, from which we see that
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Fig. 6. Comparison of RUC-Tencent runs with other runs for the image sentence gen-
eration task. Performance metric: METEOR.

RUC run2 finetune-mscoco obtains a higher precision score. This is probably
because the reranking process based on the “golden” concepts makes the system
more precision oriented.

Since the details of the test sets used in the two tracks are not available to
us, we cannot do more in-depth analysis.



Table 2. Performance of the task 2 clean track.

Run Mean METEOR Mean Precision Mean Recall Mean F1

RUC run1 dev2k 0.2393 0.6845 0.4771 0.5310

RUC run2 finetune-mscoco 0.2213 0.7015 0.4496 0.5147

Fig. 7. Images with sentences generated by the RUC-Tencent image sentence genera-
tion system. The images are hand picked that showing our system performs well.

4 Summary and Discussions

For the concept detection and localization task, we find Hierarchical Semantic
Embedding effective for resolving visual ambiguity. Negative Bootstrap improves
the classification performance further. For the image sentence generation task,
Google’s LSTM-RNN model can be improved by sentence re-ranking.



Notice that for varied reasons including the limited number of submitted runs
and the unavailability of detailed information about the test data, our analysis
is preliminary, in particular a component-wise analysis is largely missing.
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