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Abstract. We present the plant classification system submitted by the
QUT RV team to the LifeCLEF 2015 plant task. Our system learns a
content specific feature for various plant parts such as branch, leaf, fruit,
flower and stem. These features are learned using a deep convolutional
neural network. Experiments on the LifeCLEF 2015 plant dataset show
that the proposed method achieves good performance with a score of
0.633 on the test set.
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1 Introduction

Fine-grained image classification has received considerable attention recently
with a particular emphasis on classifying various species of birds, dogs and
plants [1, 3, 4, 11]. Fine-grained image classification is a challenging computer
vision problem due to the small inter-class variation and large intra-class vari-
ation. Plant classification is a particularly important domain because of the
implications for automating Agriculture as well as enabling robotic agents to
detect and measure plant distribution and growth.

To evaluate the current performance of the state-of-the-art vision technol-
ogy for plant recognition, the Plant Identification Task of the LifeCLEF chal-
lenge [5,7] focuses on distinguishing 1000 herb, tree and fern species. This is an
observation-centered task where several images from seven organs of a plant are
related to one observation. There are seven organs, referred to as content types,
and include images of the entire plant, branch, leaf, fruit, flower, stem or a leaf
scan.

Inspired by [4], we use a deep convolutional neural network (DCNN) approach
and learn a separate DCNN for each content type. We combine the content-
specific feature with a generic DCNN feature, which is trained using all of the
content types. This approach yields a highly accurate classification system with
a score of 0.633 on the test set.
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Fig. 1. For each test sample, a domain-generic (GCNN) and subset-specific (SCNN)
feature is extracted. These two features are then concatenated to form a combined
feature vector.

2 Our Approach

Our proposed system consists of two main parts. First, we perform transfer
learning to learn a domain-generic feature termed as φGCNN from all plants
images (regardless of content type). Second, we manually cluster the dataset
into subsets based on content type and learn a feature specific to each subset
(φSCNN ). For each image we extract both domain-generic (φGCNN ) and subset-
specific (φSCNN ) features, these features are obtained from layer 20, l20, of
the deep network. The two feature vectors are then concatenated to form a
single feature vector as shown in Figure 1. These features are then used to
learn a multi-class linear SVM. Power and l2 norm are applied independently
for domain-generic feature and content specific feature prior to combining the
feature vectors.

2.1 Content Clustering

There are 7 pre-defined content types consisting of images from the entire plant,
branch, leaf, fruit, flower, stem or a leaf scan. In both the training and testing
phases all participants are allowed to use the indicated content.

We make use of the content type to learn a DCNN that is fine-tuned (spe-
cialised) for a subset of the content types. However, because there is a limited
number of images for each content type, we first group the most visually similar
content types toghether. In particular, we define four subsets. The first subset
conists of the the entire plant and branch content types, the second subset con-
sists of the leaf and leaf scan content types, the third subset contains fruit and
flower content types, and the fourth subset consists of the stem only.

2.2 Deep Convolutional Neural Networks as Feature Representation

Krizhevsky et al. [8] recently achieved impressive performance on the ImageNet
recognition task using CNNs, which were initially proposed by LeCun et al. [9]



for hand written digit recognition. Since then CNNs have received considerable
attention and in the Large-scale ImageNet Challenge 2014 (ILSVRC) the top
five results were all produced using CNN-based systems [10].

In this work we fine-tune a general model for the task of plant classifi-
cation. The base model that we fine-tune is the best performing model from
ILSVRC [12], referred to as GoogLeNet. GoogLeNet is a very deep neural net-
work model with 22 layers. It consists primarily of convolutional layers. We use
the output of the last convolutional layer l20, after average pooling, to obtain
our feature vectors.

2.3 Domain Specific Feature Learning

Transfer learning has usually been applied by fine-tuning a general network,
such as the network of Krizhevsky et al. [8], to a specific task such as bird
classification [13].

Inspired by the findings of Zhang et al. [13] we learn a domain-generic DCNN
for the task of plant classification. This is achieved by applying transfer learning
on the parameters of the GoogLeNet model (learned from the large-scale Ima-
geNet dataset) using all of the training data for the plant classification task. This
new DCNN provides domain-generic features for the task of plant classification
and is referred to as the domain-generic DCNN. The only difference between the
pre-trained GoogLeNet model and the domain-generic DCNN is that the num-
ber of outputs for the last fully connected layer is changed to be 1, 000 which is
the number of training classes available. For each image we can then obtain a
domain-generic feature φGCNN from the last convolutional layer l20.

2.4 Subset Feature Learning as Content Specific Feature

A separate DCNN is learned for each of the K = 4 pre-defined subsets by fine-
tuning the domain-specific model, described in Section 2.3. The aim is to learn
features for each subset that will allow us to more easily differentiate visually
similar content of plant species. As such, for each subset, we apply fine-tuning to
the pre-trained GoogLeNet model. To train the k-th subset (Subsetk) we use the
Nk images assigned to this subset Xk = [x1, ...,xNk

], with their corresponding
class labels.

The only difference between these models and the pre-trained GoogLeNet
model is that the number of outputs for the last fully connected layer, of each
model, is set to the number of training classes in each subset. Transfer learning
is then applied separately to each network using backpropogation and stochastic
gradient descent (SGD). For each image belonging to the k-th subset a subset
feature vector φSCNNk

is obtained by taking the output of the last convolutional
layer l20.



3 Experiments

In this section we present a comparative performance evaluation of our proposed
method on a validation set and the defined test sets. The provided training
dataset is split into two sets: roughly 10% of the total training data was used as
a validation set and the rest is used for training the models. The split is based
on observation id because final testing is also observation-based.

This results in 82,033 training images, including 21,746 for the branch and
entire subset, 32,186 for fruit and flower subset, 23,234 for the leaf and leaf
scan subset and 4,867 for the stem subset. The validation set consists of 9,725
images.

We use Caffe [6] for learning generic and subset specific features. The open-
source package LibLinear [2] is used to train the multi-class linears SVMs. The
SVM cost parameter C is set to 1 and all images are resized to 224 × 224.

3.1 Results on Validation Set

First we assess our proposed method on the validation set. We conducted three
sets of experiments which examine the effectives of the domain-specific feature
vector, the subset feature vector and the combination of these two feature vec-
tors.

The results on the validation set, shown in Table 1, demonstrate that the
combination of these two feature vectors provides a considerable performance
improvement. The combination of these two feature vectors achieves a mean
accuracy of 66.6%. This is an absolute improvement of 6.5 percentage points
over the domain-specific feature vector φGCNN which achieves a mean accuracy
of 60.1%. By comparison, the subset feature vector φSCNNk

achieves a mean
accuracy of only 58.0%. We believe that the subset feature vector performs
worse than the domain-specific feature vector because of the limited number of
training images for each subset.

Table 1: Mean accuracy on the LifeCLEF 2015 Plant dataset of our proposed
method. Annotated content information is used.

Method Mean Accuracy

Domain Specific Feature 60.1%
Content Specific Feature 58.0%
Combined 66.6%

3.2 Results on Test Set

In this section, we present our submitted results for the LifeCLEF2015 plant
challenge. We submitted three runs:



– RUN1 is the result of using proposed system for classification purpose. Only
the rank 1 score is submitted for each observation.

– RUN2 is the image retrieval task where we take the first 5 predictions.
– RUN3 is based on RUN 2 but we perform an additional softmax normaliza-

tion for the first five predictions.

In Figure 2 we present the overall performance for all of the competitors
using the defined score metric. It can be seen that our best performing system
is RUN 2 which achieved a score of 0.633. This is slightly worse than SNUMED
INFO systems (RUN 4 and RUN 3).

Fig. 2. The results of observation-based for the LifeCLEF Plant Task 2015. Image
adapted from the organisers’ website.

In Figure 3 we present results for the image-based run. It can be seen that
our proposed method provides competitive performance for both the image-
based and observation-based metrics. However, we do have a minor performance
loss for the image-based result compared to the observation-based result.

4 Conclusions and Future Work

In this paper we presented a domain-specific feature learning and subset-specific
feature learning system applied to the plant identification task of LifeCLEF
2015. For domain-specific feature learning, we have shown that it is possible to



Fig. 3. The results of image-based for the LifeCLEF Plant Task 2015. Image adapted
from the organisers’ website.

perform transfer learning from a DCNN pre-trained on the larger-scale ImangNet
dataset. Furthermore, we have presented a subset feature learning system that is
able to learn content specific features. This approach yields highly competitive
performance with a score of 0.633 for this year’s task.
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