
SUNNY for Algorithm Selection: A Preliminary Study

Roberto Amadini, Fabio Biselli, Maurizio Gabbrielli, Tong Liu, and Jacopo Mauro

Department of Computer Science and Engineering
University of Bologna, Italy.

Abstract. Given a collection of algorithms, the Algorithm Selection (AS) prob-
lem consists in identifying which of them is the best one for solving a given
problem. In this paper we show how we adapted the algorithm selector SUNNY,
originally tailored for constraint solving, to deal with general AS problems. Pre-
liminary investigations based on the AS Library benchmarks already show some
promising results: for some scenarios SUNNY is able to outperform AS state-of-
the-art approaches.

1 Introduction

Given a collection of algorithms, the Algorithm Selection (AS) problem basically con-
sists in identifying which of them is the best one for solving a given problem. Initially
proposed by Rice in 1976 [9], in the last decade AS has attracted some attention [7,10].
In particular, the original notion of AS has been extended by the definition of Algorithm
Portfolio (AP) [6]. In a nutshell, AP approaches exploit a portfolio {A1, . . . , Am} of
different algorithms to get a globally better algorithm. They go beyond the original no-
tion of AS introduced by Rice since APs perform the algorithm selection case-by-case
instead of in advance. When a new, unseen problem p comes, an AP approach tries to
predict which is (or which are) the best constituent algorithm(s)Ai1 , Ai2 , . . . , Aik , with
1 ≤ ij ≤ m, for solving p and then runs such algorithm(s) on p. Scheduling k > 1 al-
gorithms can reduce the risk of selecting only one algorithm —maybe the wrong one—
and possibly enables the knowledge sharing between the scheduled algorithms. How-
ever, note that the boundary between AS and AP is fuzzy: these two related problems
are often considered as equivalent. For this reason, with a little abuse of notation, in the
following we will only use the AS notation for indicating both AS and AP problems.

SUNNY is an algorithm selector tailored for Constraint Programming (CP), where
the algorithms to be selected correspond to different constraint solvers. Originally con-
ceived for solving Constraint Satisfaction Problems (CSPs) only [1], it has been later on
adapted for dealing with Constraint Optimisation Problems (COPs) [3]. SUNNY is also
the algorithm that underpins sunny-cp [4], a constraint solver exploiting a portfolio
of different constituent solvers for solving both CSPs and COPs.

In this paper we present a preliminary evaluation of SUNNY on different AS bench-
marks taken from the Algorithm Selection library (ASlib) [5]. We show that SUNNY
can be applied also outside the CP domain, reaching promising performance in different
fields such as Answer-Set Programming (ASP), Quantified Boolean Formula (QBF),
or the Container Pre-marshalling Problem. Conversely, for the Boolean Satisfiability
(SAT) problems of ASlib there is still a performance gap with the best AS approaches.



2 SUNNY

The SUNNY [1] algorithm was originally introduced for constraint solving. Fixed a
solving timeout τ and a portfolioA of algorithms, SUNNY exploits instances similarity
to produce a sequential schedule σ = [(A1, t1), . . . , (Ah, th)] where algorithm Ai ∈ A
has to run for ti seconds and

∑h
i=1 ti = τ . For any input problem x, SUNNY uses a k-

Nearest Neighbours (k-NN) algorithm to select from a training set of known instances
the subset N(x, k) of the k instances closer to the feature vector of x according to the
Euclidean distance. Basically, the feature vector of x is a collection F (x) ∈ Rd of nu-
merical attributes that characterise x (e.g., statistics over the variables or the constraints
of x). Starting from theN(x, k) instances SUNNY relies on three heuristics to compute
the schedule σ: Hsel, for selecting the most promising algorithms {A1, . . . , Ah} ⊆ A
to run;Hall, for allocating to eachAi ∈ A a certain runtime ti ∈ [0, τ ] for i = 1, . . . , h;
Hsch, for scheduling the sequential execution of the algorithms according to their pre-
sumed speed. The heuristics Hsel, Hall, and Hsch depends on the application domain.
For CSPs, Hsel selects the smallest sub-portfolio S ⊆ A that solves the most instances
in N(x, k), by using the runtime for breaking ties. Hall allocates to each Ai ∈ S a
time ti proportional to the instances that S can solve in N(x, k), by using a special
backup solver for covering the instances of N(x, k) not solvable by any solver. Finally,
Hsch sorts the solvers by increasing solving time in N(x, k). For COPs the approach is
similar, but different evaluation metrics are used. We conclude the section by showing
an example of how SUNNY works on a given CSP; for more details about SUNNY we
refer the interested reader to [1, 3].

Example 1 Let x be a CSP, A = {A1, A2, A3, A4} a portfolio, A3 the backup solver,
τ = 1800 seconds the solving timeout, N(x, k) = {x1, ..., x5} the k = 5 neighbours
of x, and the runtimes of solver Ai on problem xj defined as in Table 1. In this case,
the smallest sub-portfolios that solve the most instances (4 to be precise) in N(x, k)
are {A1, A2, A3}, {A1, A2, A4}, and {A2, A3, A4}. The heuristic Hsel selects S =
{A1, A2, A4} because these solvers are faster in solving the instances inN(x, k). Since
A1 and A4 solve 2 instances, A2 solves 1 instance and x1 is not solved by any solver,
the time window [0, τ ] is partitioned in 2 + 2 + 1 + 1 = 6 slots: 2 assigned to A1

and A4, 1 slot to A2, and 1 to the backup solver A3. Finally, Hsch sorts the solvers
by increasing solving time. The final schedule produced by SUNNY is therefore σ =
[(A4, 600), (A1, 600), (A3, 300), (A2, 300)].

x1 x2 x3 x4 x5
A1 τ τ 3 τ 278
A2 τ 593 τ τ τ
A3 τ τ 36 1452 τ
A4 τ τ τ 122 60

Table 1. Runtimes (in seconds). τ means the solver timeout.



Scenario m n d τ Domain
ASP 11 1294 138 600 Answer-Set Programming
CSP 2 2024 86 5000 Constraint Satisfaction Problem

MAXSAT 6 876 37 2100 Maximum Satisfiability Problem
PREMARSH 4 527 16 3600 Container Pre-marshalling Problem

PROTEUS 22 4021 198 3600 CSP, with possible encoding into SAT
QBF 5 1368 46 3600 Quantified Boolean Formula

SAT11-HAND 15 296 115 5000 SAT 2011 Competition – Handcrafted problems
SAT11-INDU 18 300 115 5000 SAT 2011 Competition – Industrial problems
SAT11-RAND 9 600 115 5000 SAT 2011 Competition – Random problems
SAT12-ALL 31 1614 115 1200 SAT Challenge 2012 – All problems

SAT12-HAND 31 767 115 1200 SAT Challenge 2012 – Handcrafted problems
SAT12-INDU 31 1167 115 1200 SAT Challenge 2012 – Industrial problems
SAT12-RAND 31 1362 115 1200 SAT Challenge 2012 – Random problems

Table 2. ASlib Scenarios.

3 Evaluation

To evaluate SUNNY on different scenarios we exploited the Algorithm Selection library
(ASlib). ASlib provides standardised format and data for representing AS scenarios al-
lowing the comparison of different AS approaches. Each ASlib scenario contains: an
algorithm space A = {A1, . . . , Am}; a problem space X = {x1, . . . , xn}; a feature
space Fd = {F1, . . . , Fn} where Fj ∈ Rd is the feature vector of the problem xj ; a
performance space Pτ = {P1,1, . . . , Pm,n} where Pi,j ∈ R measures the performance
of algorithm Ai on problem xj within a timeout of τ seconds. ASlib contains 13 het-
erogeneous scenarios1 as summarised in Table 2. The scenarios differ in the number
of algorithms m, problems n, features d, and in the time limits τ . For every scenario,
the runtime is used as performance measure: if algorithm A solves problem x in t < τ
seconds the runtime RunTime(A, x) of A on x is t. Otherwise, RunTime(A, x) = τ .
Each scenario of the ASlib is evaluated with a 10-fold cross validation: X is partitioned
in 10 subsets X1, . . . ,X10 called folds, treating in turn a fold Xi as the test set and the
union

⋃
j 6=i Xj of the other folds as the training set.

Adapting SUNNY to ASlib scenarios was rather straightforward. Fixed a training
set Xtr ⊆ X and a corresponding feature space Ftr, we normalised the feature vectors
by removing all the constant features of Ftr and scaling them in the range [−1, 1].
Then, for each unknown problem x /∈ Xtr, SUNNY computes the neighbourhood
N(x, k) ⊆ Xtr and the resulting schedule σ = [(a1, t1), . . . , (ah, th)] exactly as ex-
plained in Section 2. Following the methodology of [4], we set k =

√
|Xtr| and the

backup solver as the algorithm of A having the lower average RunTime in Xtr.
Table 3 shows for each scenario the Fraction of Solved Instances (FSI) of SUNNY.

As the name underlines, the FSI of an AS approach is the ratio between the number of
instances it solves and all the instances of the scenario. SUNNY is compared against the
state-of-the-art AS approaches reported in [5] (viz., ISAC, SNNAP, aspeed, claspfolio,
claspfolio-pre, zilla, and LLAMA) and two additional baselines: the Single Best Solver
(SBS ), i.e., the algorithm in A with highest FSI, and the Virtual Best Solver (VBS ),
i.e., the oracle approach that for every x ∈ X always select the algorithm A ∈ A for

1 We considered the 1.0.1 version of ASlib. For more details, we refer the reader to [5].



Scenario VBS SBS ISAC SNNAP aspeed claspfolio claspfolio-pre zilla LLAMA SUNNY
ASP 0.937 0.859 0.896 0.910 0.890 0.923 0.923 0.915 0.920 0.913
CSP 0.875 0.858 0.859 0.858 0.862 0.872 0.872 0.872 0.873 0.870

MAXSAT 0.853 0.769 0.823 0.818 0.845 0.844 0.844 0.848 0.841 0.842
PREMARSH 1 0.812 0.843 0.753 0.956 0.867 0.945 0.918 0.879 0.949

PROTEUS 0.887 0.628 0.812 0.794 0.867 0.832 0.855 0.838 0.835 0.859
QBF 0.77 0.577 0.692 0.615 0.745 0.744 0.753 0.746 0.751 0.754

SAT11-HAND 0.74 0.497 0.541 0.611 0.676 0.649 0.672 0.655 0.669 0.622
SAT11-INDU 0.843 0.717 0.710 0.740 0.710 0.763 0.763 0.717 0.750 0.730
SAT11-RAND 0.82 0.603 0.773 0.743 0.777 0.805 0.807 0.810 0.797 0.805
SAT12-ALL 0.988 0.753 0.752 0.880 0.778 0.917 0.916 0.926 0.929 0.893

SAT12-HAND 0.701 0.477 0.467 0.580 0.587 0.636 0.638 0.649 0.653 0.608
SAT12-INDU 0.821 0.736 0.735 0.777 0.719 0.788 0.779 0.775 0.775 0.743
SAT12-RAND 0.764 0.731 0.740 0.730 0.724 0.744 0.743 0.737 0.742 0.727

Table 3. Fraction of Solved Instances.

which RunTime(A, x) is minimal. We can see that SUNNY is the best approach for
the QBF scenario, and that for all the non-SAT scenarios it is rather close to the best
performance. Conversely, for the SAT benchmarks its performance is quite poor.

The FSI metric is commonly used for comparing different AS approaches due to
its simplicity and significance. However, it does not take into account the time needed
to solve a problem. To capture also the timing aspects of the resolution, the Penalised
Average Runtime (PAR) measure is often used. PARk represents the average time taken
to solve the problems by giving a penalisation of k × τ seconds for the instances not
solved within the timeout τ .

Table 4 shows the results considering the average PAR10 score. In this case the
SBS is the single algorithm having the lower PAR10 score. Not surprisingly, PAR10 is
strongly anti-correlated to FSI and the results of 4 somehow reflect what observed in
Table 3. However, some differences arise. For instance, in addition to QBF, by consider-
ing PAR10 SUNNY is the best approach also for the PROTEUS scenarios. This means
that in this scenario aspeed solves few instances more than SUNNY, but SUNNY is
on-average faster.

Scenario VBS SBS ISAC SNNAP aspeed claspfolio claspfolio-pre zilla LLAMA SUNNY
ASP 400.2 880.5 653.6 571.2 711.2 487.2 496.0 539.5 509.1 549.0
CSP 6344.3 7201.6 7148.6 7201.6 7163.0 6511.2 6521.4 6491.5 6466.7 6617.8

MAXSAT 3127.2 4893.1 3763.1 3855.7 3748.4 3320.4 3629.3 3234.7 3367.6 3354.9
PREMARSH 227.6 7002.9 5880.8 9042.1 1964.1 5025.0 2395.7 3179.1 4634.2 2221.5

PROTEUS 4105.9 13443.4 6782.5 7430.3 5363.4 6075.1 5525.0 5900.4 6066.6 5254.4
QBF 8337.1 15330.2 11201.3 13954.0 9714.3 9333.6 9089.8 9222.5 9075.0 9064.8

SAT11-HAND 13360.7 25649.1 23325.1 19820.4 16688.4 17975.7 16897.8 17602.4 16906.5 19308.5
SAT11-INDU 8187.5 14605.9 14968.9 13426.8 15008.2 12322.7 12383.9 14621.2 12996.6 14014.9
SAT11-RAND 9186.4 19916.4 11575.1 12984.4 11589.0 9982.4 9936.2 9719.6 10341.2 9960.262
SAT12-ALL 241.3 3079.9 3101.0 1558.6 2810.2 1113.0 1163.2 1014.7 980.3 1429.8

SAT12-HAND 3662.2 6338.9 6466.3 5112.3 5071.9 4450.4 4459.4 4306.3 4252.9 4808.3
SAT12-INDU 2221.5 3266.0 3306.2 2796.8 3499.9 2653.5 2800.2 2838.4 2837.4 3211.891
SAT12-RAND 2872.8 3271.1 3168.8 3289.9 3382.1 3119.6 3161.9 3207.6 3149.6 3327.9

Table 4. Penalised Average Runtime.



4 Conclusions

In this work we presented an evaluation of SUNNY algorithm on different Algorithm
Selection (AS) scenarios coming from the Algorithm Selection library (ASlib). Despite
SUNNY is tailored for constraint solving, its adaptation to AS appears to be promising
also in other fields such as Answer-Set Programming (ASP), Quantified Boolean For-
mula (QBF), or the Container Pre-marshalling Problem. Conversely, for the Boolean
Satisfiability (SAT) problems there is still a performance gap with the best approaches.

We would like to remark that in this evaluation we used the default SUNNY ap-
proach without leveraging its settings to fit the different scenarios. As a future work
we would like to try to improve the performance of SUNNY by using well-known tech-
niques like pre-solving, parameters tuning, and feature selection. It would be interesting
to consider also different scenarios, like optimisation and planning problems. Indeed,
the ASlib currently contains a limited number of scenarios for which the only metric
is the runtime. It would be nice also to perform a deeper study to better understand
the SUNNY performance (and in particular why SUNNY is not so good for the SAT
benchmarks).

We strongly encourage the submission of new scenarios and new algorithm selectors
to the ASlib in order to foster the study and the comparison of new and better AS
approaches. For instance, since SUNNY turns out to be the best approach for QBF, it
would be interesting to consider a comparison with the multi-engine solver AQME [8].

We are currently implementing SUNNY as an automated algorithm selector for
ASlib scenarios, with the aim of enrolling it to the next ICON Challenge on Algorithm
Selection. Moreover, we are also interested in studying how SUNNY can be optimally
parallelised to run its algorithms simultaneously on multiple cores. A preliminary in-
vestigation on the SUNNY parallelisation for CSPs and COPs is presented in [2].

References

1. R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY: a Lazy Portfolio Approach for Constraint
Solving. TPLP, 14(4-5):509–524, 2014.

2. R. Amadini, M. Gabbrielli, and J. Mauro. A Multicore Tool for Constraint Solving. In IJCAI,
2015. Pre-print available at: http://arxiv.org/abs/1502.03986.

3. R. Amadini, M. Gabbrielli, and J. Mauro. Portfolio approaches for constraint optimization
problems. AMAI, pages 1–18, 2015.

4. R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY-CP: a Sequential CP Portfolio Solver. In
SAC, 2015. Available at http://www.cs.unibo.it/˜amadini/sac_2015.pdf.

5. Algorithm Selection Library - coseal. https://code.google.com/p/coseal/
wiki/AlgorithmSelectionLibrary.

6. C. P. Gomes and B. Selman. Algorithm portfolios. Artif. Intell., 126(1-2):43–62, 2001.
7. L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,

35(3):48–60, 2014.
8. L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for quantified boolean for-

mulas. Constraints, 14(1):80–116, 2009.
9. J. R. Rice. The Algorithm Selection Problem. Advances in Computers, 15:65–118, 1976.

10. K. A. Smith-Miles. Towards insightful algorithm selection for optimisation using meta-
learning concepts. In IJCNN, pages 4118–4124. IEEE, 2008.

http://arxiv.org/abs/1502.03986
http://www.cs.unibo.it/~amadini/sac_2015.pdf
https://code.google.com/p/coseal/wiki/AlgorithmSelectionLibrary
https://code.google.com/p/coseal/wiki/AlgorithmSelectionLibrary

