OBM2OWL Patterns: Spotlight on OWL
Modeling Versatility

Marek Dudas, Tomas Hanzal, Vojtéch Svatek, and Ondiej Zamazal

Department of Information and Knowledge Engineering,
University of Economics, W. Churchill Sq.4, 13067 Prague 3, Czech Republic,
{marek.dudas|tomas.hanzal|svatek|ondrej.zamazal}@vse.cz

Abstract. We present an experimental implementation of an ontologi-
cal engineering support method that allows to see multiple OWL mod-
eling options for a certain modeled situation. Initial style-independent
background model (PURO OBM) is automatically transformed to alter-
native OWL fragments, which can then be visualized and chosen from.

1 Introduction

During ontology engineering in OWL, the developer can often choose different
combinations of language constructs to model the same situation. The choice
might be driven by the intended usage of the ontology: web markup vocabularies
often favor ‘feature’ assignment to entities through data properties, while linked
data vocabularies prefer object properties for this purpose; reasoning-enabled
ontologies, in turn, express ‘features’ as classes. We call consistent sets of such
choices modeling styles. Viewing different alternatives may help supporting the
choice of style for a specific use case. We propose a method where a single style-
independent model — ontological background model (OBM) in PURO language
[6] — is created manually, and the style-specific OWL representations are then
automatically generated using OBM20OWL transformation patterns. While not
being a way to author an ontology in bulk, this approach can serve as ‘spotlight’
on different modeling options.

PURO OBMs are based on two main distinctions: between particulars and
universals and between relationships and objects (hence the PURO acronym).
There are six basic entity types: B-object (particular object), B-type (type of ob-
ject/type), B-relationship (particular relationship), B-relation (type of relation-
ship), B-valuation (particular assertion of quantitative value) and B-attribute
(type of valuation). A PURO OBM consists of named instances of these types,
plus of subTypeOf and instanceOf relationships. It captures a concrete situation
that serves as basis for analyzing existing ontologies or generating new ones.

Related research Compared to heavier-weighted OBM formalisms such as On-
toUML [1], PURO is supposed to be ‘mentally closer’ to OWL: there are no tough
notions such as ‘rigidity’ (as in OntoClean [3]), and its ‘object-type-relation’
triad corresponds to the ‘individual-class-property’ triad of OWL, except that

1) PURO does not limit the arity of relations and allows higher-order classes,
and, consequently, 2) allows abstracting from modeling style choices that are
enforced by these limitations in OWL. Generation of OWL from OntoUML has
also been investigated, however without considering OWL modeling styles. On
the other hand, ‘pattern families’ capturing alternative modeling styles have
been investigated by the W3C pattern group,' for the ‘class as property value’,
‘specified values’ and ‘n-ary relation’ modeling issues, but with no reference to
automatic transformation. Suitability of different OWL modeling styles was also
analyzed by Dermeval et al. [2], yet in the context of feature modeling only.

Motivating example 2 If we need to describe that a book was published in a city,
different ontologies propose us different types of OWL constructs:?

— data property: d:b1 o:publishedIn "Prague". (cf. RDA Registry ont.)

— object property: d:bl o:publishedIn d:Prague. (cf. purl.org/library)

— reified relationship: d: _rrl a o:publishedIn; o:book d:bil;
o:place d:Prague. (cf. British Library Data Model)

— dedicated class instantiation: d:b1 a o:BookPublishedInPrague. (this kind
of lexical encapsulation is common in the DBpedia category system).

Another example: to say that ‘025.04’ is a topic in the Dewey Decimal Clas-
sification (DDC), at least two ways are possible in OWL:

— class instantiation: 0:DDC_Topic rdfs:subClass0f d:Topic.
d:025.04 a 0:DDC_Topic. (cf. British Library Data Model)

— dedicated ‘type’ class + object property: o:ddc_topic a o:TopicType.
d:025.04 o:topicType o:ddc_topic. (cf. the openlibrary.org dataset)

Rather than aligning such choices pairwise, as we did in our previous project,
PatOMat [5], we propose the PURO OBM representation as an ‘interlingua.’

2 PURO OBM2OWL Transformation

The OBM20WL transformation patterns are currently implemented as SPARQL
UPDATE queries, with structure based on OWL20WL patterns from PatOMat.
The SELECT part describes a fragment of OBM, e.g., a B-relationship connect-
ing two B-objects. The INSERT part describes a corresponding OWL structure.
We so far created six patterns? covering rather intuitive transformations. The
transformation functionality was embedded into PURO Modeler,? our web-based
graphical editor of OBM. Once the user creates an OBM, it can be serialized
into RDF and sent to a web service that executes the SPARQL queries and re-
turns OWL ontology fragments separated into RDF graphs. Each graph is then

! nttp://www.w3.org/2001/sw/BestPractices/0EP/

2 Based on a survey from http://tomhanzal.github.io/owl-modeling-styles/.
3 The “d” prefix always refers to a fictional dataset and “o0” to a fictional ontology.
4 Available at http://lod2-dev.vse.cz/puromodeler/patterns/.

® http://lod2-dev.vse.cz/puromodeler

visualized using WebVOWTL [4] and offered for download. Although the OBM is
created as example of a concrete situation, incl. sample instances, the resulting
OWL fragments only consist of the T-box.

Consider, again, a designer of a bibliography ontology who wants to model
book topics and place of publishing. In PURO Modeler s/he creates/opens the
OBM of an example situation with book! about DDC topic 025.04 published
in Prague (Fig. 1). The tool serializes the OBM into an RDF graph® and re-
turns four alternative OWL ontology fragments from Fig. 2, which combine
the style options described in Section 1. In fragment A, object properties are
used where possible: even the topic type assignment is modeled as a property
(topic_hasType). In B, both relationships are reified (hasTopic_Relationship, pub-
lishedIn_Relationship) and the topic type assignment becomes class instantiation.
C is similar to A, but topic type assignment is modeled as in B. In D, all relation-
ships are modeled as data properties; the topic type is omitted since the topic
is now a literal. The designer can now choose the most suitable OWL fragment,
download it and integrate into the ontology using his/her favorite editor.

In the future, generation of OWL fragments could be restricted to those com-
plying with best practices; e.g., lexical encapsulation (BookPublishednInPrague)
could be omitted as suboptimal, requiring a new class for every location. For
some OBM structures the number of variants will also be smaller by definition,
e.g., an n-ary relation with n>2 cannot be modeled as plain OWL property.

Location Topic
Book
B-instanceOf B-subtypeOf
B-instanceOf
publishedin Prague DI
book1 B-instanceOf
hasTopic 025 04

Fig. 1. Example of OBM describing where a book was published and its topic.

3 Conclusions and Future Work

The presented approach of ontology style bootstrapping from an OBM is still
in its infancy and the initial set of OBM20OWL patterns is merely tentative;
yet, thanks to tool availability, feedback can already be collected. The long-
term vision is that of a portal (integrated with ontologydesignpatterns.org) where

5 Available at http://lod2-dev.vse.cz/puromodeler/bookLocationTopicOBM. rdf

hasTopic

topic_has...

HasTopic_Rel...

hasTopic_...

a)
Topic_type
" T'yp book_has...
Subclass of

Book .

publishedin Location

Location
Book

DDC_Topic

publishedl...

book_publ...

Publishedin_...

hasTopic Subclass ?f

DDC_Topic

publishedin
Location

|_Literal !
Book LI
publishedin

Book

hasTopic -
| Literal !

Fig. 2. Four variants of OWL ontology fragments generated from the OBM on Fig. 1.

experts trained in OBM (‘PURO writers’) could build and share the OBMs while
novice ontological engineers (‘PURO readers’) could pick fragments of the OBMs
and let the OBM2OWL service generate the corresponding OWL fragments for
them. Systematic elaboration and analysis of advantages and disadvantages of
the modeling styles is planned for future research. Use of lexicographic resources
to generate sound labels for new elements is also foreseen.

The research is supported by UEP IGA F4/90/2015 and by long-term insti-
tutional support of research activities by Faculty of Informatics and Statistics,
Univ. of Economics, Prague. Ondrej Zamazal is supported by CSF 14-14076P.

References

1.

Benevides, A.B., Guizzardi, G.: A model-based tool for conceptual modeling and
domain ontology engineering in OntoUML. In: Enterprise Information Systems, pp.
528-538. Springer (2009)

Dermeval, D., Tendrio, T., et al.: Ontology-based feature modeling: An empirical
study in changing scenarios. Expert Systems with Applications 42(11) (2015)
Guarino, N.; Welty, C.A.: An overview of ontoclean. In: Handbook on ontologies,
pp. 201-220. Springer (2009)

Lohmann, S., Negru, S., Haag, F., Ertl, T.. VOWL 2: user-oriented visualization of
ontologies. In: EKAW, pp. 266—281. Springer (2014)

Svéb-Zamazal, O., Dud4s, M., Svatek, V.: User-friendly pattern-based transforma-
tion of OWL ontologies. In: EKAW, pp. 426-429. Springer (2012)

Svatek, V., Homola, M., et al.: Metamodeling-based coherence checking of OWL
vocabulary background models. In: OWLED. CEUR (2013)

