
Using Adaptation Plans to Control the Behavior of
Models@runtime

Maksym Lushpenko, Nicolas Ferry, Hui Song, Franck Chauvel, Arnor Solberg

Department of Networked Systems and Services, SINTEF, Oslo, Norway
firstname.lastname@sintef.no

Abstract The models@runtime pattern proposes to leverage models as execut-
able artefacts. A runtime model describing the state of the system is causally
connected to the running system. Models@runtime engines typically play an act-
ive role in the definition of the adaptation plan that specifies the set of concrete
tasks describing how the system should be adapted to reflect the change made on
the runtime model. However, the generation of such plans generally relies on a set
of predefined rules and the resulting plan is thus arbitrarily derived. In this paper
we present an evolution of the models@runtime pattern with: (i) a DSL for the
specification of adaptation plans and (ii) a runtime environment to enact such ad-
aptation plans. The proposed approach has been applied to the Cloud Modelling
Framework (CLOUDMF).

Keywords: models@run.time, dynamic adaptation, adaptation plan, cloud computing

1 Introduction

Models@runtime [1,2] is an architectural pattern for dynamically adaptive systems that
leverages models as executable artefacts supporting the execution and adaptation of a
system. This pattern proposes to decouple the internal state of the system from the man-
agement API used to modify it. A model describing the state of the system, hereafter
called runtime model, is causally connected to the running system by exploiting its man-
agement API. Hence, any change in the running system is automatically reflected into
the model, and, conversely, any change made to the model is enacted, on demand, onto
the running system. This decoupling facilitates simulation, planning and automation of
adaptation activities.

As part of the causal connection, the engine that synchronizes the runtime model
with the running system automatically realizes the high-level adaptations made on the
model into the running system. Yet, there are often alternative ways to enact these ad-
aptations onto the system, which may significantly affect the effectiveness as well as
the performance and the quality of service of the running system. Existing synchroniz-
ation engines in projects such as DiVA [3], Kevoree [4], CLOUDMF [5], Genie [6] all
implicitly define an adaptation plan that specifies the set of concrete actions describing
how the system should be adapted to reflect the change made on the runtime model.
This plan is arbitrarily derived from the difference between the desired and the current
state of the system, and therefore overlooks more relevant options. In complex systems,



where guarantees in the quality of services are major concerns, the synchronization
must allow for customization of the adaptation plan.

In this paper, we present our approach to support the dynamic modification of adapt-
ation plans. We propose: (i) a domain specific modelling language for the specification
of adaptation plans and, (ii) a runtime environment to support the enactment of such ad-
aptation plans. The proposed approach has been implemented and applied to the Cloud
Modelling Framework (CLOUDMF) [7,5].

The remainder of the paper is organized as follow. Section 2 presents a motivat-
ing example that will be used throughout the paper. Section 3 introduces the overall
approach. Section 4 presents the modelling language before Section 5 describes the
supporting runtime environment. Finally Section 7 compares the proposed approach
with the state-of-the-art and Section 8 draws some conclusions.

2 Motivating Example

CLOUDMF supports developers and operators in managing multi-clouds systems that
run accross several clouds and exploit both IaaS and PaaS solutions. CLOUDMF imple-
ments the models@runtime pattern and thus maintains a runtime model synchronized
with the running system.

Such runtime model is described using a domain-specific modelling language (DSML)
and includes the cloud environment (e.g., virtual machines, applications servers or third-
party services) as well as the software components of interest (e.g., services, applica-
tions or libraries). This DSML, called the Cloud Modelling Language (CLOUDML),
is inspired by component-based approaches [8]. In this respect, cloud deployment can
be regarded as assemblies of components exposing ports, and bindings between these
ports. Their life-cycle reflects typical operation activities such as uploads, installations,
configurations, start or stop. Additional resources such as scripts, binaries or configura-
tion files can complement the components and explicit the behaviour of each operation
activities.

s Technology for a better society 16

Running system

Current 
model

Adaptation
engine

Target 
model

Diff

(1)
(2)

(3)
(4)

Reasoning engine(s)

(5)

Figure 1. The CLOUDMF models@runtime architecture



Figure 1 depicts the architecture of the CLOUDMF models@runtime environment.
The reasoning system reads the current runtime model (a CLOUDML model) (step 1),
which describes the running system, and produces a target model (step 2). Then, the
runtime environment computes the difference between the runtime and the target model
(step 3) and generates an ordered list of adaptation actions. The synchronization en-
gine traverses this list and triggers each action, thereby gradually adjusting the running
system. The concrete actions may be either natively supported (e.g., provisioning and
upload) or delegated to the associated resources (e.g., installation, configuration, start
or stop).Details on how these steps are performed can be found in [5].

To illustrate the need for dynamic modification of adaptation plans, we discuss the
deployment of a distributed real-time computation system called Apache Storm1. The
deployment topology of Apache Storm is shown in Figure 2. It consists of a master
node (Nimbus) which assigns tasks to slave nodes (Supervisors) whilst the coordination
between the master and slave nodes is done by a Zookeeper2 cluster which provides
support for reliable distributed coordination.

Figure 2. A Storm topology

In a manual deployment of Storm, an operator first configures the Nimbus and the
Supervisors before she connects them. Indeed, their configuration yields files that are
then filled in with specific data during their connection. By contrast, in a deployment
automated with CLOUDMF, the default ordering of actions is the opposite: the connec-
tion preceeds the configuration. Even if workarounds are possible (e.g., attach config-
uration script to the install command), they introduce two issues: (i) developers must
know in advance the exact order in which all commands from all components are going
to be executed by the CLOUDMF deployment engine, (ii) it can hinder the proper reuse
of the component because of the misuse of install/configure commands.

1 https://storm.apache.org/
2 https://zookeeper.apache.org/

https://storm.apache.org/
https://zookeeper.apache.org/


3 Overall Approach

In order to address these issues, we apply the approach depicted in Figure 3. First, the
engine derives a tentative adaptation plan from a target model describing the desired
system state. The user or a reasoning engine can then adjust it. Applied to our motivat-
ing example, once a deployment plan is generated from the defined Storm CLOUDML
model, the user can then analyze and change it to trigger the configure commands before
the connect commands. This consolidated adaptation plan is then fed in the adaptation
engine, which is responsible for its execution.

When the runtime model is already synchronized with the running system, the en-
gine first compares the actual and the desired system states and then derives a tentative
adaptation plan, which can be modified before being enacted.

Create/update
runtime model

Generate adaptation plan 
from the runtime model

Reconfigure adaptation
plan if needed

Execute adaptation plan

Declarative definition
of the desired system's state

Definition of the
adaptation's behavior

Figure 3. Overall approach

4 A DSL for adaptation plans

We model adaptation plans as workflows. Although existing "models@runtime" plat-
forms usually derive adaptation plans as a sequence of adaptation actions, these actions
may often be executed in parallel. For instance, in CLOUDMF, adaptation actions have
to be parallelized as the associated running system is inherently distributed and deploy-
ment actions are often time consuming.

Our language to model adaptation plans is evolved from a subset of the concepts
of UML activity diagrams. Figure 4 depicts the adaptation plan specifying the deploy-
ment of a simple Apache Storm cluster using our language. This workflow reflects the
synchronization needed to properly provision, deploy and configure the whole Storm
cluster. It starts by provisioning the cloud resources needed for the storm and the Zoo-
Keeper clusters. Once the ZooKeeper cluster is installed and started, the installation of
the Nimbus and its Supervisor is initiated and the workflow proceeds with connecting
all these pieces.



Storm deployment plan

Provision
Zookeeper

Provision
Nimbus

Provision
supervisor

Install & 
start 

Zookeeper

Install
Nimbus

Install
supervisor

Configure
& start 
Nimbus

Connect to 
zookeeper

Connect to 
Nimbus

Start 
supervisor

Credentials

VM IP 
addresses

Data flow ActionControl flow JoinForkActivityInitialNode ActivityFinalNodeObjectNode

Figure 4. Simplified deployment plan of a storm cluster

Figure 5 shows the metamodel of our language. An adaptation plan consists is an
Activity made of ActivityNodes, and ActivityEdges. An ActivityNode can be
an Action to be performed on the running system. For instance, in the context of
CLOUDML, it represents deployment actions such as the provisioning of a virtual ma-
chine (VM). An ObjectNode is another type of ActivityNode which can be used to
store data that can later be exploited by Actions (e.g., the IP address of the provisioned
VM). Finally, an ActivityNode can be a ControlNode, which can be specialized into
an ActivityInitial or ActivityFinal node describing the beginning and end of
an adaptation plan or into a join or fork node to parallelize and synchronize the exe-
cution of independent Actions. An ExpansionRegion can be used to specify that a set
of tasks has to be executed several times in parallel or sequentially. ActivityNodes are
linked through ActivityEdges. The attribute objectFlow is used to specify that the
edge represents either the control flow orchestrating the execution of ActivityNodes
or the data flow to exchange objects between tasks.

Figure 5. Adaptation plans metamodel



5 Runtime environment

This language is exploited by the runtime environment to specify and manipulate adapt-
ation plans. In order to implement the approach presented in Section 3 we evolved the
classical models@runtime architecture as depicted by the grey boxes in Figure 6. Once
a target model has been provided as input (step 3) to the models@runtime environment,
it can be compared to the runtime model if there is one. By contrast with the classical
approach, the target model or the result of this comparison is then fed to an adaptation
plan generator (step 4), which produces an initial adaptation plan (step 5). This plan
is exposed by the models@runtime environment and can be modified by third parties.
Once the appropriate plan identified, the latter can be validated (step 6) before being
executed (step 7). The execution engine can then trigger a set of atomic actions (step 8)
to be enacted onto the running system (step 9).

s Technology for a better society

Models@runtime

15

Running system

Current 
model

Adaptation
action 

executor

Target 
model

Diff

(1)
(2)

(3)
(4)

(5)

Reasoning engine(s)

Adaptation
plan

Adaptation
plan

generator

Plan 
validator

Plan 
execution 
engine

(6)

(7)

(8)

(9)

Figure 6. Evolution of the models@runtime architecture

In the following section we present our engines: (i) to generate an adaptation plan
from a CLOUDML model and (ii) to execute the generated plan.

5.1 From CLOUDML models to Deployment plans

The engines to generate adaptation plans are typically specific to the domain of the
models@runtime engine. In the context of our motivating example we created a trans-
formation generating an adaptation plan from a CLOUDML model or from the compar-
ison of two CLOUDML models. The plans are generated using the language presented
in Section 4.

This transformation consists of the following four rules that are executed sequen-
tially. During the execution of each rule, a set of ActivityNodes and ActivityEdges
is created, together with the data required for the execution of Actions.

Provision cloud resources This rule creates in the adaptation plan the actions respons-
ible for the parallel provisioning of virtual machines or cloud services on a given
cloud provider. A Fork node is created to enable parallel provisioning.



Install components For every software component, this rule creates an action for each
of the upload, download and install commands associated to the life-cycle manage-
ment of the component. In addition, if a component depends on another, it ensures
that the related actions are created in the proper order (i.e., required components
are installed first).

Connect components This rule creates an action for each commands specified in the
resources attached to the relationships. Moreover, it creates a Join node to syn-
chronize install actions of the components involved in the relationship.

Start components This rule creates actions in the adaptation plan for the configure and
start commands of every component.

The way adaptation plans are generated is specific to the domain of the models@runtime
engine. However, the language and its runtime environment are generic and can be ap-
plied to different domains. In the next section we present our execution environment.

5.2 Execution engine

Once an adaptation plan has been generated and validated, the adaptation engine visits
the plan in the proper order (taking into account parallelization and synchronization
points) and executes every Action.

This engine relies on two libraries: the Java Reflection API3 and the Java Fork/Join
framework4. The first one is used to ensure the independence of both the language
and the execution engine from the domain on which the models@runtime engine is
applied. Each action within an adaptation plan refers to a method that will enact the
adaptation, the execution engine thus exploits the reflection mechanism to trigger the
call to the specified method. The second library offers support for the parallelization and
synchronization of the adaptation actions. In particular, it provides support for starting
multiple threads asynchronously and for joining them afterwards.

Thanks to this mechanism, the engine executes each parallel branch of the adapt-
ation plan concurrently meaning that there are no time dependencies between tasks in
different parallel branches. The adaptation engine creates a number of threads whenever
it enters a Fork node (explicit fork) or an Action node with multiple outgoing edges
(implicit fork), and joins these multiple threads whenever it reaches a Join node (ex-
plicit join) or an Action node with multiple incoming edges (implicit join).

While the adaptation plan is being visited, the execution engine tracks the status of
each adaptation action and reflects this status in the adaptation plan. Each node and edge
in the adaptation plan may be in one of three states: Inactive, Active and Done (i.e.,
before the execution of the node/edge, during, and after the execution respectively). As
a result, the adaptation plan becomes a runtime model of the adaptation process that
co-evolves with the runtime model of the running system.

3 https://docs.oracle.com/javase/tutorial/reflect/
4 https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.
html

https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html


6 Implementation

Our language is implemented as plain Java objects, and also exists as an internal DSL
within the CLOUDMF API. As for our Storm example, a whole deployment plan is
represented as an Activity (see Listing 1.1).

Listing 1.1. Creating a deployment plan
1 Activity deploymentPlan = ActivityBuilder.getActivity ();

The minimal set of nodes required for an executable plan consists of one StartNode,
one or several ActionNodes and one StopNode (see Listing 1.2). The first task that has
to be performed during a deployment is the provisioning of the virtual machines. For
each VM to provision, an action is created in the plan. Two parameters have to be
defined when creating an action: (i) the name of the method that will be used to enact
the action (e.g., reflection will be used to call the "provision" method that exploits the
cloud provider API to actually provision the VM); and (ii) the necessary information to
perform the call.

Listing 1.2. Creating start, stop and action nodes
1 ActivityInitialNode start = ActivityBuilder.controlStart ();

Action provision = ActivityBuilder.actionNode (" Provision",VM);
3 ActivityFinalNode stop = ActivityBuilder.controlStop ();

Virtual machines can typically be provisioned in parallel, thus a ForkNode has to
be created and connected to the provisioning actions. Similar operation has to be per-
formed to synchronize the tasks after provisioning (see Listing 1.3). The Boolean para-
meter used when creating these nodes indicates if the operators are applied to the control
or data flows. In this case, they are applied to the control flow.

Listing 1.3. Creating synchronization actions
1 Fork fork = ActivityBuilder.forkNode(false);

ActivityBuilder.connect(fork , provision , true);
3 Join join = ActivityBuilder.joinNode(false);

ActivityBuilder.connect(provision , join , true);

Finally, ObjectNodes can be created to store some data, such as the IPs of the pro-
visioned VMs (see Listing 1.4). An ObjectNode can be specialized into two types:
DatastoreNode, which does not allow to store duplicates or ParameterNode, which
can be used to supply some data to the deployment plan in the beginning of its execu-
tion.

Listing 1.4. Creating an object node
ObjectNode IP = ActivityBuilder.objectNode ("IP", Type);

The results from this work are available as an open-source project5 implemented in
Java, using Maven as the build tool, and have been fully integrated with CLOUDMF6.
The execution engine exploits the Java reflection and the join/fork frameworks. In addi-
tion, an engine has been created to automatically generate a DOT file from an adaptation
plan together with a web page for their runtime graphical visualization.

5 https://github.com/SINTEF-9012/cloudml/tree/Maksym
6 https://github.com/SINTEF-9012/cloudml/tree/master

https://github.com/SINTEF-9012/cloudml/tree/Maksym
https://github.com/SINTEF-9012/cloudml/tree/master


7 Related Work

As explained before, projects such as DiVA [3], Kevoree [4], and Genie [6] that perform
architecture-based software adaptation relies on architectures similar to the one presen-
ted in Section 2. From the difference between the runtime model and a target model,
a comparison engine identifies the list of adaptation actions to be performed in order
to reach the desired configuration. Similar approaches also exist at a lower level of ab-
straction such as [9] which provides support for updating Java Software at runtime. By
contrast with our approach, these works do not include mechanism enabling the runtime
orchestration and adaption of the list of adaptation actions.

The Sm@rt (Supporting Models@Runtime) framework [10] supports developers in
constructing a runtime component model on top of legacy systems. Developers define
a meta-model, which specifies the types of elements that compose the running system
as well as their relationships. Developers provide annotations on this meta-model to
specify the relation between the model operations (e.g., creating an element, reading
an attribute, or reset a connection) and the system’s management API. From the two
inputs, the Sm@rt generation framework automatically generates the synchronization
engine that maintains the causal connection between the model and the running system.
This framework provides developers with the ability to tune the association between
models modifications and system’s adaptation actions. However, these actions cannot
be orchestrated at runtime.

The EUREMA [11] framework supports the design and adaptation of self-adaptive
systems that may involve multiple feedback loops. In particular, EURESMA allows
developers to model explicitly feedback loops by capturing their runtime models, their
usage, the flow of models operations as well as the relationships between these models.
These models are kept alive at runtime and can be evolved. This approach does not
offer explicit support for the definition of adaptation plans, however, the adaptation and
monitoring transformations that causally connect the running system and the runtime
model could be modeled as a feedback loops thus making our work complementary.

8 Conclusion & Future Work

In this paper we presented an evolution of the classical models@runtime approach to
support the dynamic management of the adaptation behavior of a models@runtime en-
vironment. The proposed approach consists of: (i) a DSL for the specification of ad-
aptation plans (i.e., the plans describing the set of adaptation actions to be performed
in order to reach the desired application state); and (ii) a runtime environment to enact
such adaptation plans.

Within our current implementation the engines to generate and validate adaptation
plans are specific to CLOUDMF. In future work we will consider generalizing and ap-
plying our approach to other domains as well as extending it with an exception handling
mechanism possibly that could be combined with transaction and rollback support. In
particular, we plan to apply it to the software product line domain as a runtime engine
to build and adapt a product from a set of features. Longer term future work will consist
in building a similar framework for the monitoring mechanism embedded into typical



models@runtime engines. This would enable external entities to fully control the way
a runtime model is synchronized with the running system.

Acknowledgement. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement number: 318484 (MODAClouds), 317715 (PaaSage).

References

1. Morin, B., Barais, O., Jézéquel, J.M., Fleurey, F., Solberg, A.: Models@Run.time to Support
Dynamic Adaptation. IEEE Computer 42(10) (2009) 44–51

2. Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Computer 42(10) (2009) 22–27
3. Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg, A.: Models@ run. time to support

dynamic adaptation. Computer 42(10) (2009) 44–51
4. Nain, G., Fouquet, F., Morin, B., Barais, O., Jézéquel, J.M., et al.: Integrating iot and ios

with a component-based approach. In: EUROMICRO-SEAA. (2010) 191–198
5. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: Cloudmf: Applying mde to tame

the complexity of managing multi-cloud applications. In: Utility and Cloud Computing
(UCC), 2014 IEEE/ACM 7th International Conference on, IEEE (2014) 269–277

6. Bencomo, N., Grace, P., Flores, C., Hughes, D., Blair, G.: Genie: Supporting the model
driven development of reflective, component-based adaptive systems. In: ICSE, ACM (2008)
811–814

7. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven provi-
sioning, deployment, monitoring, and adaptation of multi-cloud systems. In O’Conner, L.,
ed.: Proceedings of CLOUD 2013: 6th IEEE International Conference on Cloud Computing,
IEEE Computer Society (2013) 887–894

8. Szyperski, C.: Component Software: Beyond Object-Oriented Programming (2nd edition).
Addison-Wesley Professional (2011)

9. Cazzola, W., Rossini, N.A., Al-Refai, M., France, R.B.: Fine-grained software evolution
using uml activity and class models. In: Model-Driven Engineering Languages and Systems.
Springer (2013) 271–286

10. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating synchronization
engines between running systems and their model-based views. In: Models in Software
Engineering. Springer (2010) 140–154

11. Vogel, T., Giese, H.: Model-driven engineering of self-adaptive software with eurema. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 8(4) (2014) 18


	Using Adaptation Plans to Control the Behavior of Models@runtime



