Learning Probabilistic Ontologies with
Distributed Parameter Learning

Giuseppe Cota!, Riccardo Zese', Elena Bellodi', Fabrizio Riguzzi?, and
Evelina Lamma!

! Dipartimento di Ingegneria — University of Ferrara
Via Saragat 1, 1-44122, Ferrara, Italy
2 Dipartimento di Matematica e Informatica — University of Ferrara
Via Saragat 1, 1-44122, Ferrara, Italy
[giuseppe.cota,riccardo.zese,elena.bellodi,evelina.lamma,
fabrizio.riguzzi]@unife.it

Abstract. We consider the problem of learning both the structure and
the parameters of Probabilistic Description Logics under DISPONTE.
DISPONTE (“DIstribution Semantics for Probabilistic ONTologiEs”)
adapts the distribution semantics for Probabilistic Logic Programming
to Description Logics. The system LEAP for “LEArning Probabilis-
tic description logics” learns both the structure and the parameters of
DISPONTE knowledge bases (KBs) by exploiting the algorithms CELOE
and EDGE. The former stands for “Class Expression Learning for On-
tology Engineering” and it is used to generate good candidate axioms
to add to the KB, while the latter learns the probabilistic parameters
and evaluates the KB. EDGE for “Em over bDds for description loGics
paramEter learning” is an algorithm for learning the parameters of prob-
abilistic ontologies from data. In order to contain the computational cost,
a distributed version of EDGE called EDGEM® was developed. EDGEME
exploits the MapReduce (MR) strategy by means of the Message Pass-
ing Interface. In this paper we propose the system LEAPME It is a
re-engineered version of LEAP which is able to use distributed parallel
parameter learning algorithms such as EDGEME,

Keywords: Probabilistic Description Logics, Structure Learning,
Parameter Learning, MapReduce, Message Passing Interface.

1 Introduction

In real world domains the information is often uncertain, hence it is of fore-
most importance to model uncertainty in representations of the world, including
Description Logics (DLs).

In [10,16,6] the authors studied the use of probabilistic DLs and various
approaches for representing uncertainty in DLs.

Moreover, some works have started to appear about learning the probabilistic
parameters or the whole structure of probabilistic ontologies. These are moti-
vated, on one hand, from the fact that specifying the values of the probabilities is

a difficult task for humans and data is usually available that could be leveraged
for tuning them, and, on the other hand, from the fact that in some domains
there exist poor-structured knowledge bases which could be improved [10,9].

In Probabilistic Logic Programming (PLP) various proposals for representing
uncertainty have been presented. One of the most successful approaches is the
distribution semantics [15]. In [3,14,11] the authors proposed an approach to
represent probabilistic axioms in DLs called DISPONTE (“DIstribution Seman-
tics for Probabilistic ONTologiEs”), which adapts the distribution semantics for
Probabilistic Logic Programming to DLs.

LEAP [13] for “LEArning Probabilistic description logics” is an algorithm
for learning the structure and the parameters of probabilistic DLs following
DISPONTE. It combines the learning system CELOE [8] with EDGE [12]. The
former, CELOE (“Class Expression Learning for Ontology Engineering”), pro-
vides a method to build new (subsumption) axioms that can be added to the KB,
while the latter is used to learn the parameters of these probabilistic axioms.

EDGE stands for “Em over bDds for description loGics paramEter learning”
and learns the parameters of a probabilistic theory. This algorithm is rather
expensive from a computational point of view. Therefore, in order to reduce
EDGE running time, we developed EDGEM® [5]. It represents a distributed
implementation of EDGE and uses a simple MapReduce approach based on the
Message Passing Interface (MPI).

In this paper we present an evolution of LEAP called LEAPM® which adapts
the LEAP algorithm to use EDGEM®. In addition, due to a software re-engineer-
ing effort, it was possible to remove the RMI module used by LEAP. To the
best of our knowledge there are no other algorithms that perform distributed
structure learning of probabilistic DLs.

The paper is structured as follows. Section 2 introduces Description Log-
ics and summarizes DISPONTE. Sections 3 and 4 briefly describe the EDGE
and EDGEMR® algorithms. Section 5 presents LEAPM®, Finally, Section 7 draws
conclusions.

2 Description Logics and DISPONTE

Description Logics (DLs) are a family of logic based knowledge representation
formalisms which are of particular interest for representing ontologies and for
the Semantic Web. For an extensive introduction to DLs we refer to [1,2].

While DLs are a fragment of first order logic, they are usually represented
using a syntax based on concepts and roles. A concept corresponds to a set of
individuals while a role corresponds to a set of couples of individuals of the
domain.

A query over a KB is usually an axiom for which we want to test the en-
tailment from the KB. The entailment test may be reduced to checking the
unsatisfiability of a concept in the KB, i.e., the emptiness of the concept.

DISPONTE [3] (“DIstribution Semantics for Probabilistic ONTologiEs”) ap-
plies the distribution semantics to probabilistic ontologies [15]. In DISPONTE

a probabilistic knowledge base K is a set of certain and probabilistic axioms.
Certain axioms take the form of regular DL axioms. Probabilistic axioms take
the form p :: E, where p is a real number in [0,1] and E is a DL axiom. A
DISPONTE KB defines a distribution over DL KBs called worlds assuming that
the axioms are independent. Each world w is obtained by including every certain
axiom plus a subset of chosen probabilistic axioms.

3 Parameter Learning for Probabilistic DLs

EDGE [12] is a parameter learning algorithm which adapts the algorithm EM-
BLEM [4], developed for learning the parameters for probabilistic logic programs,
to the case of probabilistic DLs under DISPONTE. Inspired by [7], it performs
an Expectation-Maximization cycle over Binary Decision Diagrams (BDDs).

EDGE performs supervised parameter learning. It takes as input a DISPON-
TE KB and a number of positive and negative examples that represent the
queries in the form of concept membership axioms, i.e., in the form a : C for an
individual a and a class C.

First, EDGE generates, for each query, the BDD encoding its explanations
using BUNDLE [14]. Then, EDGE starts the EM cycle in which the steps of
Expectation and Maximization are iterated until a local maximum of the log-
likelihood (LL) of the examples is reached. The LL of the examples is guaranteed
to increase at each iteration. EDGE stops when the difference between the LL
of the current iteration and that of the previous one drops below a threshold e
or when this difference is below a fraction § of the previous LL. Finally, EDGE
returns the reached LL and the new probabilities for the probabilistic axioms.

EDGE is written in Java, hence it is highly portable. For further information
about EDGE please refer to [12].

4 Distributed Parameter Learning for Probabilistic DLs

In this section we briefly describe a parallel version of EDGE that exploits the
MapReduce approach in order to compute the parameters. We called this algo-
rithm EDGEM® [5].

Like most MapReduce frameworks, EDGEM®’s architecture follows a master-
slave model. The communication between the master and the slaves is done by
means of the Message Passing Interface (MPI).

In a distributed context, the performances depend on the scheduling strategy.
In order to evaluate different methods, we developed two scheduling strategies:
single-step scheduling and dynamic scheduling. These are used during the queries
computation phase.

Single-step Scheduling if N is the number of the slaves, the master divides
the total number of queries into N + 1 chunks, i.e. the number of slaves plus
the master. Then the master begins to compute its queries while, for the
other chunks of queries, the master starts a thread for sending each chunk

to the corresponding slave. After the master has terminated dealing with
its queries, it waits for the results from the slaves. When the slowest slave
returns its results to the master, EDGEM® proceeds to the EM cycle.

Dynamic Scheduling is more flexible and adaptive than single-step schedul-
ing. At first, each machine is assigned a fixed-size chunk of queries in order.
Then, if the master ends handling its chunk it just takes the next one, in-
stead, if a slave ends handling its chunk, it asks the master for another one
and the master replies by sending a new chunk of queries to the slave. Dur-
ing this phase the master runs a thread listener that waits for the slaves’
requests of new chunks and for each request the listener starts a new thread
that sends a chunk to the slave which has done the request (to improve the
performances this is done through a thread pool). When all the queries are
evaluated, EDGEM® starts the EM cycle.

Experimental results conducted in [5] show that dynamic scheduling has usually
better performances than single-step.

5 Structure Learning with Distributed Parameter
Learning

LEAPM® is an evolution of the LEAP system [13]. While the latter exploits
EDGE, the first was adapted to be able to perform EDGEM®. Moreover, after
a process of software re-engineering it was possible to remove the RMI com-
munication module used by LEAP and therefore reduce some communication
overhead.

It performs structure and parameter learning of probabilistic ontologies under
DISPONTE by exploiting: (1) CELOE [8] for the structure, and (2) EDGEM®
(Section 4) for the parameters.

CELOE [8] was implemented in Java and belongs to the open-source frame-
work DL-Learner®. Let us consider a knowledge base K and a concept name
Target whose formal description, i.e. class description, we want to learn. It
learns a set of n class expressions C; (1 < ¢ < n) from a set of positive and
negative examples. Let K' = K U{C} where K is the background knowledge, we
say that a concept C' covers an example e if K’ |= e. The class expressions found
are sorted according to a heuristic. Such expressions can be used to generate
candidate axioms of the form C; C Target.

In order to learn an ontology, LEAPM® first searches for good candidate
probabilistic subsumption axioms by means of CELOE, then it performs a greedy
search in the space of theories using EDGEM® to evaluate the theories using the
log-likelihood as heuristic.

LEAPMR takes as input the knowledge base K and a set of examples, then
generates a set of candidate axioms by exploiting CELOE. A first execution
of EDGEM® is applied to K to compute the initial value of the parameters
and of the LL. Then LEAPM® adds to K one probabilistic subsumption axiom

% http://dl-learner.org/

generated from CELOE. After each addition, EDGEM® is performed on the
extended KB to compute the LL of the data and the parameters. If the LL is
better than the current best, the new axiom is kept in the knowledge base and the
parameter of the probabilistic axiom are updated, otherwise the learned axiom is
removed from the ontology and the previous parameters are restored. The final
theory is obtained from the union of the initial ontology and the probabilistic
axioms learned.

6 Experiments

In order to test how much the exploitation of EDGEM® can improve the perfor-
mances of LEAPMR we did a preliminary test where we considered the Moral4
KB which qualitatively simulates moral reasoning. It contains 202 individuals
and 4710 axioms (22 axioms are probabilistic).

We performed the experiments on a cluster of 64-bit Linux machines with
8-cores Intel Haswell 2.40 GHz CPUs and 2 GB (max) memory allotted to Java
per node. We allotted 1, 3, 5, 9 and 17 nodes, where the execution with 1 node
corresponds to the execution of LEAP, while for the other configurations we used
the dynamic scheduling with chunks containing 3 queries. For each experiment 2
candidate probabilistic axioms are generated by using CELOE and a maximum
of 3 explanations per query was set for EDGEMR. Table 1 shows the speedup
obtained as a function of the number of machines (nodes). The speedup is the
ratio of the running time of 1 worker to the one of n workers. We can note
that the speedup is significant even if it is sublinear, showing that a certain
amount of overhead (the resources, and thereby the time, spent for the MPI
communications) is present.

N. of Nodes
Dataset 3 [5 [9 [9
Moral | 23 | 36 [65 [110

Table 1. Speedup of LEAPMFE relative to LEAP for Moral KB.

7 Conclusions

The paper presents the algorithm LEAPM® for learning the structure of proba-
bilistic description logics under DISPONTE. LEAPM® performs EDGEM® which
is a MapReduce implementation of EDGE, exploiting modern computing infras-
tructures for performing distributed parameter learning.

We are currently working for distributing both the structure and the parame-
ter learning of probabilistic knowledge bases by exploiting EDGEM® also during

* https://archive.ics.uci.edu/ml/datasets/Moral+Reasoner

the building of the class expressions. In particular we would like to distribute
the scoring function used to evaluate the obtained refinements.

References

1.

10.

11.

12.

13.

14.

15.

16.

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York, NY, USA (2003)

Baader, F., Horrocks, I., Sattler, U.: Description Logics, chap. 3, pp. 135-179.
Elsevier Science (2008)

Bellodi, E., Lamma, E., Riguzzi, F., Albani, S.: A distribution semantics for prob-
abilistic ontologies. In: International Workshop on Uncertainty Reasoning for the
Semantic Web. CEUR, Workshop Proceedings, vol. 778, pp. 75-86. Sun SITE Cen-
tral Europe (2011)

Bellodi, E., Riguzzi, F.: Expectation Maximization over Binary Decision Diagrams
for probabilistic logic programs. Intell. Data Anal. 17(2), 343-363 (2013)

Cota, G., Zese, R., Bellodi, E., Lamma, E., Riguzzi, F.: Distributed parameter
learning for probabilistic ontologies (2015), to appear

. Fleischhacker, D., Volker, J.: Inductive learning of disjointness axioms. In: On the

Move to Meaningful Internet Systems: OTM 2011, pp. 680-697. Springer (2011)
Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM al-
gorithm by BDDs. In: Late Breaking Papers of the International Conference on
Inductive Logic Programming. pp. 44-49 (2008)

Lehmann, J., Auer, S., Bithmann, L., Tramp, S.: Class expression learning for
ontology engineering. J. Web Semant. 9(1), 71-81 (2011)

Minervini, P., d’Amato, C., Fanizzi, N.: Learning probabilistic description logic
concepts: Under different assumptions on missing knowledge. In: Proceedings of
the 27th Annual ACM Symposium on Applied Computing. pp. 378-383. ACM
(2012)

Ochoa-Luna, J.E., Revoredo, K., Cozman, F.G.: Learning probabilistic description
logics: A framework and algorithms. In: Advances in Artificial Intelligence, pp.
28-39. Springer (2011)

Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic
ontologies. In: Uncertainty Reasoning for the Semantic Web. CEUR Workshop
Proceedings, vol. 900, pp. 3-14. Sun SITE Central Europe (2012)

Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Parameter learning for probabilistic
ontologies. In: RR 2013. LNCS, vol. 7994, pp. 265-270. Springer Berlin Heidelberg
(2013)

Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Learning probabilistic
description logics. In: Uncertainty Reasoning for the Semantic Web III, pp. 63-78.
LNCS, Springer International Publishing (2014)

Riguzzi, F., Lamma, E., Bellodi, E., Zese, R.: BUNDLE: A reasoner for proba-
bilistic ontologies. In: RR 2013. LNCS, vol. 7994, pp. 183-197. Springer Berlin
Heidelberg (2013)

Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming.
pp. 715-729. MIT Press (1995)

Volker, J., Niepert, M.: Statistical schema induction. In: The Semantic Web: Re-
search and Applications, pp. 124-138. Springer Berlin Heidelberg (2011)

