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Abstract. Semantic image interpretation (SII) leverages Semantic Web ontolo-
gies for generating a mathematical structure that describes the content of images.
SII algorithms consider the ontologies only in a late phase of the SII process to
enrich these structures. In this research proposal we study a well-founded frame-
work that combines logical knowledge with low-level image features in the early
phase of SII. The image content is represented with a partial model of an on-
tology. Each element of the partial model is grounded to a set of segments of
the image. Moreover, we propose an approximate algorithm that searches for the
most plausible partial model. The comparison of our method with a knowledge-
blind baseline shows that the use of ontologies significantly improves the results.

1 Introduction

Semantic image interpretation (SII) is the task of generating a semantically rich struc-
ture that describes the content of an image [8]. This structure is both human and ma-
chine understandable and can be encoded by using the Semantic Web (SW) language
RDF. The first advantage is that RDF enables the enrichment of the semantic content of
images with SW resources, the second one is that an RDF based description of images
enables content-based image retrieval via query languages like SPARQL.

The main challenge in SII is bridging the so called semantic gap [3], which is the
complex correlation between low-level image features and high-level semantic con-
cepts. High-level knowledge plays a key role in bridging the semantic gap [17,18]. This
knowledge can be found in the ontologies provided by the SW.

Most of the current approaches to SII exploit ontologies at a later stage when some
hypothesis (a geometric description of the objects and their spatial relations) of the im-
age content have already been formulated by a bottom-up approach (see for instance
[13,15,17,11,12,3,6,1]). In these cases background knowledge is exploited to check the
consistency of the output and/or to infer new facts. These works do not consider uncer-
tainty coming from the low-level image analysis or require a set of DL rules for defining
what is abducible, which need to be manually crafted.

In this research proposal we study a general framework for SII that allows the in-
tegration of ontologies with low-level image features. The framework takes as input
the ontology and exploits it in the process of image interpretation. The output is a de-
scription of the content of an image in terms of a (most plausible) partial logical model
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of the ontology [15]. Instead of lifting up low-level features into a logical form using
concrete domain (as in [11]) we proceed in the opposite direction, by compiling down
the background knowledge into low-level features. This allows us a more flexible infer-
ence in processing numeric information and to use simpler, and more efficient, logical
reasoners for the semantic part. This partial model is generated by using optimisation
methods (e.g. clustering) that integrate numeric and logical information. Our contribu-
tion is a formal framework for SII that integrates low-level features and logical axioms.
Moreover, we developed an early prototype and we evaluated it, with promising results,
on the task of detecting complex objects starting from the presence of their parts [5].

2 Theoretical framework

The proposed framework takes as input a labelled picture that is a picture partitioned
into segments (regions of pixels) using a semantic segmentation algorithm [4,7]. Each
segment has a set of weighted labels that represent the level of confidence of the se-
mantic segmentation. Labels are taken from the signature Σ which is the alphabet of
the ontology. A labelled picture is a pair P = 〈S,L〉 where S = {s1 . . . , sn} is a set of
segments of the picture P , and L is a function that associates to each segment s ∈ S a
set L(s) of weighted labels 〈l, w〉 ∈ Σ × (0, 1].

In this research proposal we study a method for discovering new objects (e.g., com-
posite objects) and relations between objects by exploiting low-level image features
and a Description Logic (DL) [2] ontology. The ontology has the classical signature
Σ = ΣC ] ΣR ] ΣI of symbols for concepts, relations and individuals respectively.
We adopt the standard definitions for syntax and semantics of DL3 . An ontology O on
Σ is a set of DL axioms. An interpretation of a DL signature Σ is a pair I =

〈
∆I , ·I

〉
,

where ∆I is a non empty set and ·I is a function that interprets the symbols of Σ in
∆I . I is a model of an ontology O if it satisfies all the axioms in O. The axioms of
the ontology are constraints on the states of the world. A picture, however, provides
only a partial view of the state of the world, indeed, it could show a person with only
one (visible) leg. Therefore, the content of a picture is not isomorphic to a model, as a
model could contain objects not appearing in the picture (the invisible leg). The content
of a picture should instead be represented as a partial model4.

Definition 1 (Partial model). Let I and I ′ be two interpretations of the signatures Σ
and Σ′ respectively, with Σ ⊆ Σ′; I ′ is an extension of I, or equivalently I ′ extends
I, if∆I ⊆ ∆I′ , aI = aI

′
, CI = CI

′ ∩∆I andRI = RI
′ ∩∆I×∆I , for all a ∈ ΣI ,

C ∈ ΣC and R ∈ ΣR. Ip is a partial model for a ontology O, in symbols Ip |=p O, if
there is a model I of O that extends Ip.

In this framework the use of DL ontologies is twofold: first they are a terminological
source for labelled pictures, second the DL inference services are exploited to check
if an interpretation is a partial model and thus inferring new facts. The semantic inter-
pretation of a picture is a partial model plus an alignment, called grounding, of every
element of ∆Ip with the segments of the picture.

3 In this paper we use the SHIQ DL.
4 This intuition was introduced in [15], our formalization however is slightly different.



Definition 2 (Semantically interpreted picture). Given an ontologyO with signature
Σ and a labelled picture P = 〈S,L〉, a semantically interpreted picture is a triple
S = (P, Ip,G)O where:

– Ip = 〈∆Ip , ·Ip〉 is a partial model of O;
– G ⊆ ∆Ip × S is a left-total and surjective relation called grounding relation:

if 〈d, s〉 ∈ G then there exists an l ∈ L(s) such that:
1. if l ∈ ΣC then d ∈ lIp ;
2. if l ∈ ΣI then d = lIp ;
3. if l ∈ ΣR then 〈d, d′〉 ∈ RI or 〈d′, d〉 ∈ RI for some d′ ∈ ∆I .

The grounding of every d ∈ ∆Ip , denoted by G(d), is the set {s ∈ S | 〈d, s〉 ∈ G}.

There are many possible explanations of the picture content, thus there are many
partial models describing a picture via a grounding relation. We define a cost function
S that assigns a cost to a partial model based on its adherence to the image content:
the higher the adherence the lower the cost. The most plausible partial model I∗p is the
partial model that minimizes S, in symbols:

I∗p = argmin
Ip|=pO

G⊆∆Ip×S

S(P, Ip,G)O (1)

The definition of S has to take into account low-level features of the segments and high-
level semantic features of the partial model derivable form the ontology. Intuitively the
cost function measures the semantic gap between the two types of features.

Definition 3 (Semantic image interpretation problem). Given an ontology O and a
labelled picture P , a cost function S, the semantic image interpretation problem is the
construction of a semantically interpreted picture S = (P, Ip,G)O that minimizes S.

3 Method

In this proposal we restrict to the recognition of complex objects from their parts. For
example, given a labelled picture where only some parts of a man (the legs, one arm and
the head) and of a horse (the legs, the muzzle and the tail) are labelled we want to infer
the presence of some logical individuals with their classes (man and horse respectively).
These individuals are linked with their parts through the partOf relation. This can be
seen as a clustering problem and we specify the cost function in terms of clustering
optimisation. The parts (simple objects) are the input of the clustering problem whereas
a single cluster contains the parts of a composite object. In addition, the parts to cluster
are the individuals d ∈ ∆Ip with the following features:

– a set of low-level image features extracted from G(d), the grounding of d;
– a set of semantic features corresponding the most specific concepts extracted from

the set {C ∈ ΣC | d ∈ CIp} assigned to d by Ip.



We use the centroid of G(d) as a numeric feature but the approach can be generalised
to other features. Clustering algorithms are based on some distance between the input
elements defined in terms of their features. Let δG(d, d′) be the Euclidean distance of the
centroids of G(d) and G(d′), δsO(d, d′) a semantic distance between simple objects and
δcO(d, d

′) a semantic distance between a simple object and its corresponding composite
object. We define the cost function as the quality measure of the clustering:

S(〈P, Ip,G〉O) = α

 ∑
d,d′∈(∃hasPart.>)Ip

δG(d, d
′)

+

(1−α)

 ∑
〈d′,d〉∈partOfIp

〈d′′,d〉∈partOfIp

(δG(d
′, d′′) + δsO(d

′, d′′)) +
∑

〈d′,d〉∈partOfIp

(δG(d
′, d) + δcO(d

′, d))

 .

Following [9], the first component of the above equation measures the centroid distance
between the composite objects (inter-cluster distance). The second component estimates
the distance between the elements of each single cluster (intra-cluster distance).

Minimising analytically the above equation is rather complex, thus we developed
an iterative algorithm that at each loop groups the several parts of a composite object
approximating the cost function. If the grouping is not a partial model the algorithm
enters in the next loop and selects another clustering. In the first step our algorithm
generates an initial partial model Ip from P = 〈S,L〉 where ∆Ip contains an element
ds for every segment s ∈ S and any concept C in the labelled picture is interpreted as
CIp = {ds|C ∈ L(s)}. The grounding G is the set of pair 〈ds, s〉. Then, the algorithm
enters in a loop where a non-parametric clustering procedure [10] clusters the input
elements d ∈ ∆Ip by using their numeric and semantic features according to δG and
δsO. Each cluster cl corresponds to a composite object dcl which is introduced in Ip
and is connected via the hasPart relation to the elements of cl. We predict the type
of this new individual via abductive reasoning: the type is the ontology concept that
shares the maximum number of parts with the elements of the cluster. For example, if
we cluster some elements of type Tail, Muzzle and Arm an abducted ontology concept
will be Horse. These new facts are introduced in Ip and the algorithm checks if Ip is a
partial model ofO by using a DL reasoner (Pellet [16]). If true the algorithm returns Ip
otherwise it extends the input elements with a set of consistency features that encode
information about the inconsistency of Ip. These features tend to separate (resp. join)
the segments that have been joined (resp. separated) in the previous clustering. The
cluster of our example is inconsistent because a horse does not have arms. Then the
algorithm returns at the beginning of the loop.

4 Evaluation

To evaluate our approach we created, by using LABELME [14], a dataset of 204 labelled
pictures. For each picture we manually annotated simple objects, composite objects and



Table 1. Performance of the proposed algorithm for SII and comparison with the baseline. The
reported data are the average of the three measures on each single picture.

precGRP recGRP F1GRP precCOP recCOP F1COP

SII 0.61 0.89 0.67 0.73 0.75 0.74
Baseline 0.45 0.71 0.48 0.66 0.69 0.66

their part-whole relations5. We also created a simple ontology6 with a basic formalisa-
tion of meronymy in the domains of: houses, trees, people, and street vehicles. We built
a ground truth by associating every single labelled picture P to its partial model en-
coded in an ABox AP . The partial model returned by our algorithm is encoded in the
A∗P ABox, in order to compare AP with A∗P we define the following two measures.

Grouping (GRP): this measure expresses how good is our algorithm at grouping
parts of the same composite object. We define precision, recall and F1 measure on the
set of siblings (the parts of the same composite object): sibl(A) = {〈d, d′〉 | ∃d′′ :
partOf(d, d′′), partOf(d′, d′′) ∈ A}. Thus:

precGRP(P) =
|sibl(AP) ∩ sibl(A∗P)|

|sibl(A∗P)|
recGRP(P) =

|sibl(AP) ∩ sibl(A∗P)|
|sibl(AP)|

Complex-object prediction (COP): this measure expresses how good is our algo-
rithm at predicting the type of the composite object. We define precision, recall and
F1 measure on the types of the composite object each part is assigned to: ptype(A) =
{〈d,C〉 | ∃d′ : {partOf(d, d′),C(d′)} ⊂ A}. Thus:

precCOP(P) =
|ptype(AP) ∩ ptype(A∗P)|

|ptype(A∗P)|
recCOP(P) =

|ptype(AP) ∩ ptype(A∗P)|
|ptype(AP)|

To measure how the semantics improves the recognition of composite objects from their
parts we implemented a baseline that clusters without semantic features, see Table 1.
We can see that the explicit use of semantic knowledge via semantic distance, abductive
and deductive reasoning improves the baseline that relies only on numeric features.

5 Conclusions

We proposed a well-founded and general framework for SII that integrates symbolic
information of an ontology with low-level numeric features of a picture. An image
is interpreted as a (most plausible) partial model of an ontology that allows the query
about the semantic content. We applied the framework to the specific task of recognizing
composite objects from their parts. The evaluation shows good results and the injection
of semantic knowledge improves the performance with respect to a semantically-blind
baseline. As future work, we want to extend our evaluation by using more low-level
features, by studying other relations and by using a semantic segmentation algorithm as
source of labelled pictures.

5 An example of labelled picture is available at http://bit.ly/1DXZxic
6 The ontology is available at http://bit.ly/1AruGh0
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