


ish Digg) and Wikipedia. They propose models for cascade
growth and estimate model parameters but give no size pre-
dictions.

From the information spread point of view, a num-
ber of related studies have largely descriptive focus, unlike
our quantitative prediction goals. In [9] high correlation is
observed between indegree, retweet and mention influence,
while outdegree (the number of tweets sent by the user) is
found to be heavily spammed. [21] reports similar findings
on the relation among follower, mention and retweet influ-
ence. Several more results describe the specific means of
information spread on Facebook [6, 2, 7].

There are only a limited number of related work on retweet
count prediction. Cheng et al. [10] predict retweet count
based on network features. Unlike in our result where we
predict immediately after the tweet is published, they con-
sider prediction after the first few retweets. The network fea-
tures used in their work are similar to the ones in the present
paper and in our earlier work [24]. The main contribution
of this work is the investigation of content-based features
and the interaction between network and content features.
Petrovic et al. [26] predicts if a tweet will be retweeted at
all, and give no evaluation on distinguishing between the
messages of the same user. As another result very similar to
the previous one, [20] give batch evaluation, for all users and
the entire time range. They also use logistic regression; their
features include tf.idf and an LDA based topic model. Simi-
lar to us, they classify for ranges of retweet counts, however
they mention that their accuracy is very low for the mid-
range. We include logistic regression among other classifiers
as baseline methods in our work.

From the content analysis point of view, Bakshy et al.
[3, 4] investigate bit.ly urls but finds little connection be-
tween influence and url content, unlike in our experiments
where message content elements prove to be valuable for
predicting influence. There has been several studies focusing
exclusively on the analysis of the tweet message textual con-
tent to solve the re-tweet count prediction problem. Besides
the terms of the message, Naveed et al. [23] introduced the
features of direct message, mention, hashtag, url, exclama-
tion mark, question mark, positive and negative sentiment,
positive and negative emoticons and valence, arousal, dom-
inance lexicon features. Wang et al. [28] proposed deeper
linguistic features like verb tense, named entities, discourse
relations and sentence similarity. Similar to [26], neither of
these results attempt to distinguish between the tweets of
the same user.

Regarding the idea of combining author, network and
content information, our work is related to Gupta et al.
[18] who used these sources of information jointly for scoring
tweets according to their credibility. Although credibility is
related to social influence, the prediction of the credibility
and the size of retweet cascade of a message requires dif-
ferent background information. Hence, we employ different
network and content features.

2. DATA SET
The dataset was collected by Aragón et al. [1] using the

Twitter API that we extended by a crawl of the user net-
work. Our data set hence consists of two parts:

• Tweet dataset: tweet text and user metadata on the

Figure 1: Temporal density of tweeting activity.

Table 1: Size of the tweet time series.
Number of users 371,401
Number of tweets 1,947,234

Number of retweets 1,272,443

Table 2: Size of the follower network.
Number of users 330,677
Number of edges 16,585,837

Average in/out degree 37

Occupy Wall Street movement1.

• Follower network: The list of followers of users who
posted at least one message in the tweet dataset.

Table 1 shows the number of users and tweets in the dataset.
One can see that a large part of the collected tweets are
retweets. Table 2 contains the size of the crawled social net-
works. Note that the average in- and outdegree is relatively
high. Fig. 1 shows the temporal density of tweeting activity.

For each tweet, our data contains

• tweet and user ID,

• timestamp of creation,

• hashtags used in the tweet, and

• the tweet text content.

In case of a retweet, we have all these information not only
on the actual tweet, but also on the original root tweet that
had been retweeted. We define the root tweet as the first
occurrence of a given tweet.

3. RETWEET CASCADES

3.1 Constructing retweet cascades
In case of a retweet, the Twitter API provides us with

the ID of the original tweet. By collecting retweets for a
given original tweet ID, we may obtain the set users who
have retweeted a given tweet with the corresponding retweet
timestamps. The Twitter API however does not tell us the
actual path of cascades if the original tweet was retweeted

1http://en.wikipedia.org/wiki/Occupy Wall Street
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Figure 2: Creation of retweet cascades: Figure (a)
shows the computation of the cascade edges. In Fig-
ures (b) and (c) we show the possible solutions in
case of missing cascade edges.

Table 3: Examples of some highly retweeted mes-
sages in the data set.

message retweet counts
@OWS Live #OWS We can do the same
reducing burning of fossil fuels too !!

325

Long Live The Peaceful Tea Party!!
#gameon #college #twisters #ampat
#sgp @OWS Live #ows #violence
#stupid #liberal #usefulidiots #geta-
clue

325

@[user] we need our own banking system
by the people for the people. #Occupy-
WallStreet and have the 99% put their
money there

319

The #NYPD officer who maced peaceful
young women in the face got 10 vacation
days docked. Not joking. [url] #ows

143

several times. The information from the Twitter API on
the tweet needs to be combined with the follower network
to reconstruct the possible information pathways for a given
tweet. However it can happen that for a given retweeter,
more than one friend has retweeted the corresponding tweet
before and hence we do not know the exact information
source of the retweeter. The retweet ambiguity problem is
well described in [3]. In what follows we consider all friends
as possible information sources. In other words for a given
tweet we consider all directed edges in the follower network
in which information flow could occur (see Fig. 2 (a)).

3.2 Restoring missing cascade edges
For a given tweet, the computed edges define us a retweet

cascade. However our dataset contains only a sample of
tweets on the given hashtags and hence may not be com-
plete: it can happen that a few intermediate retweeters are
missing from our data. As a result, sometimes the recon-
structed cascade graphs are disconnected. As detailed in
Fig. 2 (b) and (c), we handle this problem in two differ-
ent ways. One possible solution is to only consider the first
connected component of the cascade (see Fig. 2 (b)). An-
other one is to connect each disconnected part to the root
tweeter with one virtual cascade edge (see Fig. 2 (c)). In
what follows, we work with cascades that contain virtual
edges, therefore every retweeter is included in the cascade.

3.3 Examples of highly retweeted messages

In Table 3, we give a few examples of highly retweeted
messages with the actual urls and names replaced by [url]
and [name].

4. FEATURE ENGINEERING
To train our models, we generate features for each root

tweet in the data and then we predict the future cascade
size of the root tweet from these feature sets. For a given
root tweet, we compute features about

• the author user and her follower network (network fea-
tures) and

• the textual content of the tweet itself (content fea-
tures).

Table 4 gives an overview of the feature templates used in
our experiments.

4.1 Network Features
We consider statistics about the user and her cascades in

the past as well as the influence and impressibility of her
followers. We capture the influence and impressibility of a
user from previously observed cascades by measuring the
following quantities:

• Number of tweets in different time frames: for a given
root tweet appeared in time t and a predefined time
frame τ , we count the number of tweets generated by
the corresponding user in the time interval [t − τ, t].
We set τ for 1, 6, 12, 24, 48 and 168 hours.

• Average number of tweets in different time frames: We
divide the number of tweets in a given time frame by
τ .

• User influence: for a given user, we compute the num-
ber of times one of her followers retweeted her, divided
by the number of the followers of the user.

• User impressibility: for a given user, we compute the
number of times she retweeted one of her followees,
divided by the number of followees of the user.

4.2 Content features
The first step of content processing is text normalization.

We converted the text them into lower case form except
those which are fully upper cased and replaced tokens by
their stem given by the Porter stemming algorithm. We
replaced user mentions (starting with ’@’) and numbers by
placeholder strings and removed the punctuation marks.

The content features are extracted from the normalized
texts. The basic feature template in text analysis consists
the terms of the message. We used a simple whitespace to-
kenizer rather than a more sophisticated linguistic tokenizer
as previous studies reported its empirical advantage [19].
We employed unigrams, bigrams and trigrams of tokens be-
cause longer phrases just hurt the performance of the system
in our preliminary experiments.

Besides terms, we extracted the following features describ-
ing the orthography of the message:

• Hashtags are used to mark specific topics, they can
be appended after the tweets or inline in the content,
marked by #. From the counts of hashtags the user
can tips the topic categories of tweet content but too
many hashtag can be irritating to the readers as they
just make confusion.



• Telephone number: If the tweet contains telephone
number it is more likely to be spam or ads.

• Urls: The referred urls can navigate the reader to text,
sound, and image information, like media elements and
journals thus they can attract interested readers. We
distinguish between full and truncated urls. The trun-
cated urls are ended with three dot, its probably copied
from other tweet content, so it was interested by some-
body.

• The like sign is an illustrator, encouragement to others
to share the tweet.

• The presence of a question mark indicates uncertainty.
In Twitter, questions are usually rhetorical—people do
not seek answers on Twitter [19]). The author more
likely wants to make the reader think about the mes-
sage content.

• The Exclamation mark highlights the part of the tweet,
it expresses emotions and opinions.

• If Numerical expressions are present the facts are quan-
tified then it is more likely to have real information
content. The actual value of numbers were ignored.

• Mentions: If a user mentioned (referred) in the tweet
the content of the tweet is probably connected to the
mentioned user. It can have informal or private con-
tent.

• Emoticons are short character sequences representing
emotions. We clustered the emoticons into positive,
negative and neutral categories.

The last group of content features tries to capture the
modality of the message:

• Swear words influence the style and attractiveness of
the tweet. The reaction for swearing can be ignorance
and also reattacking, which is not relevant in terms
of retweet cascade size prediction. We extracted 458
swear words from http://www.youswear.com.

• Weasel words and phrases2 aimed at creating an im-
pression that a specific and/or meaningful statement
has been made when in fact only a vague or ambigu-
ous claim has been communicated. We used the weasel
word lexicon of [27].

• We employed the linguistic inquiry categories (LIWC)
[25] of the tweets’ words as well. These categories de-
scribe words from emotional, cognitive and structural
points of view. For example the “ask” word it is in
Hear, Senses, Social and Present categories. Differ-
ent LIWC categories can have different effect on the
influence of the tweet in question.

4.3 N-grams
By using all the content features, we built n-grams as

consecutive sequences in the tweet text that may include
simply three terms (“posted a photo”), @-mentions, hash-
tags, url (“@OccupyPics Photo http://t.co/. . . ” coded as
[[user] Photo [url]]), numbers (“has [number] followers”),
non-alphanumeric (“right now !”) as well as markers for
swear or weasel expressions (“[weasel word] people say”).
We defined the following classes of n-grams, for n ≤ 3:
2See http://en.wikipedia.org/wiki/Wikipedia:
Embrace_weasel_words.

Table 4: Feature set.
network number of {followers, tweets, root tweets},

average {cascade size, root cascade size},
maximum {cascade size, root cascade size},
variance of {cascade sizes, root cascade sizes},
number of tweets generated with different time
frames,
time average of the number of tweets in different
time frames
tweeter’s influence and impressibility
followers’ average influence and impressibility

terms normalized unigrams, bigrams and trigrams
ortho-
graphic

number of # with the values 0, 1, 2 . . . 4 or 4 <
number of {like signs, ?, !, mentions}
number of full and truncated urls
number of arabic numbers and phone numbers
number of positive/negative/other emoticons

modality number of swear words and weasel phrases
union of the inquiry categories of the words

• Modality: The n-gram contains at least one swear or
weasel word or expression (overall 208,368);

• Orthographic: No swear or weasel word but at least
one orthographic term (overall 2,751,935);

• Terms: N-grams formed only of terms, no swear or
weasel words and orthographic features (overall 771,196).

For efficiency, we selected the most frequent 1,000 n-grams
from each class. The entire feature set hence consists of
3,000 trigrams.

5. TEMPORAL TRAINING AND EVALUA-
TION

Here we describe the way we generate training and test
sets for our algorithms detailed in Section 6. First, for each
root tweet we compute the corresponding network and con-
tent features. We create daily re-trained models: for a given
day t, we train a model on all root tweets that have been
generated before t but appeared later than t − τ , where τ
is the preset time frame. After training based on the data
before a given day, we compute our predictions for all root
tweets appeared in that day.

In order to keep the features up to date, we recompute all
network properties online, on the fly and use the new values
to give predictions. By this method, we may immediately
notice if a user starts gaining high attention or if a bursty
event happens.

We take special attention to defining the values used for
training and evaluation. For evaluation, we used the in-
formation till the end of the three week data set collection
period, i.e. we used all the known tweets that belong to the
given cascade. However, for training, we are only allowed
to use and count the tweets up to the end of the training
period. Since the testing period is longer, we linearly ap-
proximated the values for the remaining part of the testing
period.

Our goal is to predict cascade size at the time when the
root tweet is generated. One method we use is regression,
which directly predict the size of the retweet cascade. For
regression, we only use the global error measures:



Figure 3: Cascade size distribution.

• Mean Average Error (MAE);

• Root Mean Squared Error (RMSE);

• Root Relative Squared Error (RRSE).

We also experiment with multiclass classification for ranges
of the cascade size. The cascade size follows a power law dis-
tribution (see Fig. 3) and we defined three buckets, one with
0. . . 10 (referred as “low”), one with 11. . . 100 (“medium”)
and a largest one with more than 100 (“high”) retweeters
participating in the cascade. We evaluate performance by
AUC [13] averaged for the three classes. Note that AUC has
a probabilistic interpretation: for the example of the “high”
class, the value of the AUC is equal to the probability that a
random highly retweeted message is ranked before a random
non-highly retweeted one.

By the probabilistic interpretation of AUC, we may realize
that a classifier will perform well if it orders the users well
with little consideration on their individual messages. Since
our goal is to predict the messages in time and not the rather
static user visibility and influence, we define new averaging
schemes for predicting the success of individual messages.

We consider the classification of the messages of a single
user and define two aggregations of the individual AUC val-
ues. First, we simply average the AUC values of users for
each day (user average)

AUCuser =
1

N

N∑
i=1

AUCi, (1)

Second, we are weighting the individual AUC values with
the activity of the user (number of tweets by the user for
the actual day)

AUCwuser =

∑N
i=1AUCiTi∑N

i Ti

(2)

where Ti is the number of tweets by the i-th user.
We may also obtain regressors from the multiclass classifi-

cation results. In order to make classification and regression
comparable, we give a very simple transformation that re-
places each class by a value that can be used as regressor.

We select and use the training set average value in each class
as the ideal value for the prediction.

6. RESULTS

A
U

C

0.8

0.805

0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

 

time frame size (days)
1 2 3 4 5 6 7 8 9 10 11

Figure 4: Daily average AUC of classifiers trained
with different set of features, evaluated both as a
global list (top) and as average on the user level by
equation (1), bottom.

In this section, we train and evaluate first the classification
and then the regression models to predict the future cascade
size of tweets. We predict day by day, for each day in the
testing period. For classification, we also evaluate on the
user level by using equations (1) and (2). For classification,
we show the best performing features as well.

As mentioned in Section 5, we may train our model with
different τ . In Figure 4 we show the average AUC value with
different time frames. As Twitter trends change rapidly, we
achieve the best average results if we train our algorithms
on root tweets that were generated in the previous week
(approximately seven days), both for global and for user
level average evaluation.

6.1 Cascade size by multiclass classification
First, we measure classifier performance by computing

the average AUC values of the final results for the three
size ranges. We were interested in how different classifiers
perform and how different feature sets affect classifier per-
formance. For this reason, we repeated our experiments
with different feature subsets. Figure 5 shows our results.
For each day, the network features give a strong baseline.



Figure 5: Daily average AUC of classifiers trained with different set of features.

Table 5: Retweet size classification daily average performance of different feature sets. The ideal values are
MAE=2.435, RMSE=15.94, RRSE=0.414.

Retweet range Weighted MAE RMSE RRSE
Features Low Medium High Average
network 0.799 0.785 0.886 0.799 5.156 22.93 2.449
network & modality 0.827 0.814 0.905 0.827 4.843 22.40 2.033
network & orthographic 0.844 0.829 0.912 0.843 4.521 22.13 1.790
network & terms 0.857 0.847 0.914 0.857 4.157 21.90 1.323
network & all content 0.862 0.849 0.921 0.862 3.926 22.15 1.286

Table 6: Weighted average AUC over low, medium
and high retweet range of different classifiers. Note
that Multi-Layer Perceptron (MLP) did not termi-
nate in 3 days for the large feature set.

Weighted Average AUC network network & all content
Random Forest 0.799 0.862
Logistic Regression 0.605 0.689
MLP 0.783 n/a

The combination of these features with the content result
in strong improvement in classifier performance. In Table 5
we summarize the average AUC values for different feature
subsets over all four datasets. Our results are consistent:
in all cases, the content related features improve the perfor-
mance. Finally, we give the performance of other classifiers
in Table 6 and conclude the superiority of the Random For-
est classifier [12]. We use the classifier implementations of
Weka [29] and LibLinear [11].

6.2 Cascade size by regression
We give regression results by the linear regression, mul-

tilayer perceptron and the regression tree implementation
of Weka [29] in Table 7. As seen when compared to the
last three columns in Table 5, regression methods outper-
form multiclass classification results transformed to regres-
sors. Note that for the transformation, we use class averages
obtained from the training data. If however we could per-

Table 7: Retweet size regression daily average per-
formance of different feature sets.

MAE RMSE RRSE
Features
network, linear regression 3.225 14.30 0.909
network, MLP 3.015 14.91 0.716
network, RepTree 2.989 12.60 0.853
network & modality, RepTree 3.099 13.86 0.867
network & orthographic, RepTree 3.100 13.87 0.865
network & terms, RepTree 3.090 13.86 0.868
all, RepTree 3.100 13.87 0.865

fectly classify the three classes, the ideal error values would
be MAE=2.435, RMSE=15.94, RRSE=0.414. We could not
reach close to the ideal values by regression either.

6.3 Cascade size on the user level
Our main evaluation is found in Table 8 where we consider

the user level average AUC values as described in Section 5.
As expected, since the new evaluation metrics give more em-
phasis on distinguishing between the tweets of the same user,
we see even stronger gain of the modality and orthographic
features.

6.4 Feature contribution analysis
We selected the most important network features by run-

ning a LogitBoost classifier [14]. The best features were all



Table 8: Retweet size classification daily average performance of different feature sets evaluated on the user
level as defined in equations (1) and (2).

Retweet range Low Medium High Average
Features Uniform Weighted Uniform Weighted Uniform Weighted Uniform Weighted
network AUC 0.684 0.712 0.752 0.800 0.746 0.796 0.719 0.756
network & modality AUC 0.700 0.722 0.751 0.796 0.737 0.756 0.726 0.757
network & orthographic AUC 0.702 0.731 0.753 0.797 0.768 0.782 0.730 0.764
network & terms AUC 0.705 0.732 0.757 0.800 0.767 0.786 0.733 0.766
network & all content AUC 0.740 0.783 0.763 0.812 0.769 0.820 0.752 0.797

characterizing the network. We list the first five, in the order
of importance:

1. The number of followers of the root tweet user;
2. The average cascade size of previous root tweets by the

user.
3. The number of root tweets of the user so far (retweets

excluded);
4. The average cascade size of previous tweets (including

retweets) by the user;
5. The number of tweets of the user so far;

6.5 Content feature contribution analysis
We selected the most important content features by run-

ning logistic regression over the 3,000 trigrams described in
Section 4.3. The features are complex expressions contain-
ing elements from the three major group of linguistic feature
sets in the following order of absolute weight obtained by lo-
gistic regression:

1. Three words [marriage between democracy], in this or-
der;

2. [at [hashtag occupywallstreet][url]]: the word “at”,
followed by the hashtag “#occupywallstreet”, and a
url;

3. [between democracy and];
4. [capitalism is over];
5. [[hashtag ows] pls];
6. [[weasel word] marriage between]: the expression

“marriage between”on the weasel word list, which counts
as the third element of the trigram;

7. [[hashtag zizek] at [hashtag occupywallstreet]];
8. [[hashtag occupywallstreet][url][hashtag auspol]];
9. [over [hashtag zizek] at];

10. [calientan la]: means “heating up”.

Note that all these features have negative weight for the
upper two classes and positive or close to 0 for the lower
class. Hence the appearance of these trigrams decrease the
value obtained by the network feature based model. We may
conclude that the use of weasel words and uninformative
phrases reduce the chance of getting retweeted, as opposed
to the sample highly retweeted messages in Table 3.

6.6 Frozen network features
To illustrate the importance of the temporal training and

evaluation framework and the online update of the network
features, we made an experiment where we replaced user
features by static ones. The results are summarized in Ta-
ble 9. Note that on the user level, all messages will have the
same network features and hence classification will be ran-
dom with AUC=0.5. In contrast, online updated network

Table 9: Retweet size classification with fixed user
network features.

Retweet range Weighted
Features Low Medium High Average
static network 0.798 0.779 0.868 0.797
static network & all
content

0.854 0.804 0.932 0.851

static network per
user

0.5 0.5 0.5 0.5

static network & all
content per user

0.798 0.784 0.935 0.798

features are already capable of distinguishing between the
messages of the same user, as seen in Tables 5 and 7.

7. CONCLUSIONS
In this paper we investigated the possibility of predicting

the future popularity of a recently appeared text message
in Twitter’s social networking system. Besides the typical
user and network related features, we consider hashtag and
linguistic analysis based ones as well. Our results do not only
confirm the possibility of predicting the future popularity
of a tweet, but also indicate that deep content analysis is
important to improve the quality of the prediction.

In our experiments, we give high importance to the tem-
poral aspects of the prediction: we predict immediately after
the message is published, and we also evaluate on the user
level. We consider user level evaluation key in temporal
analysis, since the influence and popularity of a given user
is relative stable while the retweet count of her particular
messages may greatly vary in time. On the user level, we
observe the importance of linguistic elements of the content.
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