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Abstract. The Gene Ontology (GO) consists of around 40,000 terms
refering to classes of biological process, cell component and gene product
activity. It has been used to annotate the functions and locations of
several million gene products. Much pharmacological research focuses on
understanding how disease conditions differ from physiological conditions
in molecular terms with the aim of finding new drug targets for therapy.
Gene set enrichment analysis using the GO and its annotations provides
a powerful way to assess those differences.

Roche has developed a bespoke controlled vocabulary (RCV) to support
enrichment analysis. Each term is manually mapped to a list of Gene
Ontology (GO) terms. The groupings are tailored to the research aims
of Roche and as a result, many groupings are out-of-scope for GO classes.
For example, many RCV terms group process and cell parts according
to the cell type they occur in.

The manual mapping strategy is labour intensive and hard to sustain as
the GO evolves. We have automated mappings between RCV and the
GO via OWL-EL queries. This is made possible by extensive axioma-
tisation linking the GO to ontologies of cells, anatomical entites and
chemicals. We can fully automate mapping for approximately one third
of the terms in the RCV, with another 40% having 10 or fewer GO terms
requiring manual mapping. Automated mapping uncovers many missing
mappings. GSEA using the resulting, semi-automated mapping of RCV
to GO detects enrichment to gene sets missed with the manual-only
mapping.

The OWL query approach we describe can be used as the basis of new
ways to query the GO, group annotations and carry out GSEA. Impor-
tantly, it allows the classifications used in enrichment analysis to be much
more closely tailored to the needs of researchers and industry than was
previously possible.
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1 Introduction

The Gene Ontology (GO) consists of almost 40,000 terms and has been used
to annotate millions of gene products to record their subcellular location (e.g.,
lysosome), their molecular function (e.g., kinase activity) and their wider role in
cellular, developmental and physiological processes (e.g., signal transduction) [4].
The classification and part hierarchies in the GO are used to group genes anno-
tated with related terms in user-facing tools such as QuickGO [2] and AmiGO [3],
and to generate gene sets for gene set enrichment analysis (GSEA) [16].

Much pharmacological research focuses on understanding the molecular dif-
ferences between disease conditions and physiological conditions, with the aim
of finding new drug targets for therapy. Differential expression experiments
analysing disease models or pathological tissue samples are an important source
of data contributing to our understanding of this. GSEA using GO derived gene
sets is an efficient way to find functionally coherent gene sets that are statistically
over or under-represented in gene lists derived from these experiments. GSEA
results using the full GO and large numbers of genes can be difficult and slow to
interpret due to high levels of overlap between gene sets. There are a number of
sources of overlap: Grouping via class and part heirarchies means that gene sets
derived from annotation to a class subsumes the gene sets of its subclasses and
subparts; one GO class can sit in multiple branches of the heirarchy; a single
gene product may be annotated to terms in multiple branches.

One way to reduce overlap is to use a flat list of high or intermediate level
GO terms, commonly referred to as a slim. But for this to provide useful results,
the terms in the slim need to be sufficiently descriptive to fit the experimental
use cases. Rather than use a slim of GO terms, F. Hoffmann-La Roche Ltd.
(“Roche”), maintains an internal controlled vocabulary (referred to hereafter as
RCV) for use in GSEA. The RCV consists of around 360 terms, each of which
is mapped to a set of terms from GO, just as a term in a GO slim maps to a set
of subclasses and subparts. It is tailored to the research interests of Roche, and
its terms were chosen with the aim of achieving gene set composition descriptive
and broad enough to allow robust and statistically significant results, though
not so broad and redundant in composition that it prevents easy interpretation
of results. Detecting enrichment to gene products involved in anatomy, organ or
cell-specific processes or components can be critical for pharmacological research,
especially when working with complex tissues where there is a need to tease apart
events occurring in specific tissue compartments or cell types. To support this,
many RCV terms group GO terms in ways that are out of scope for classes in
the GO, such as grouping processes solely by where they occur.

To date, Roche has manually maintained mappings between RCV and GO.
Keeping this mapping up-to-date and complete has become impractical given
the evolution of the GO. Recent developments in the GO make it possible to
automate mappings between the RCV and the GO. The GO has switched its
underlying formalization to Web Ontology Language (OWL2) [10], and has dra-
matically increased the number of logical axioms [17]. The chemical participants
in over 12,000 processes or functions are specified in GO via axioms referencing
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chemical entities defined by Chemical Entities of Biological Interest (ChEBI) [9,
8]. Over 8000 GO classes have some direct or indirect logical link to a term from
the Cell Ontology (CL) [15] or the Uber anatomy ontology (Uberon) [7]. These
record, for example, the location of cellular components (e.g., the acrosome and
its parts are present only in sperm), cell types that are the sole location of some
process (‘natural killer cell degranulation’ only occurs in natural killer cells),
and the products of developmental processes (bone is a product of ‘bone mor-
phogenesis’). There are also over 2500 logical axioms recording the functions of
cellular components via links to molecular function and biological process terms.
This axiomatisation makes it possible to construct bespoke classifications of GO
classes that would be out-of-scope for named GO classes. For example, we can
use OWL queries to group processes occurring in T-cells or in the pancreas, or
processes involving nitric oxide or collagen fibers. Here we describe the develop-
ment and testing of an automated mapping between GO and RCV, making use
of OWL reasoning.

2 Methods

As the RCV is a flat list and includes classifications that are orthogonal to the
classification schemes used by the GO, it is not amenable to mapping via ontology
alignment techniques that use ontology structure [1]. Given the small size of
RCV, it is viable to manually map each RCV term to an OWL class expression,
which can then be used in conjunction with an OWL reasoner to generate lists
of GO terms. The RCV does not include textual definitions definitions to clarify
meaning, so for each RCV term we attempted to find a class expression (a
mapping query) that reflected the intended meaning of the RCV term, as judged
by the RCV term name, manual mappings and discussion with RCV developers.

2.1 Query strategy

To ensure speed and scalability, we chose to restrict mapping queries to the
EL profile of OWL2, allowing us to use ELK, a fast, scaleable EL reasoner,
to run queries [13]. In order to keep the mapping process simple, only a single
mapping class was specified for each mapping. To compensate partially for the
lack of disjunction (OR) in OWL-EL, we developed a hierarchy of high level
object properties for use in queries. For example, we define occurs in OR -
has participant as a grouping relation allowing queries for processes that occur
in a specified cell, or have that cell as a participant. Many RCV terms group
i) processes in which a specified chemical or cell participates with ii) processes
regulating those in which it participates (see table 1 for example). To support
such groupings, we used an OWL property chain axiom [10] to define a relation,
regulates o has participant, which can be used to query for processes that
regulate a process in which some specified entity is a participant. We then defined
a super-property, participant OR reg participant, for this new relation and
has participant:
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These new, high-level object properties are difficult to name in a way that
communicates the meanings of mapping queries clearly. In order to compensate
for this, we used scripting to generate human readable descriptions for each
mapping query. Compare, for example, the mapping query for the RCV term
cannabinoid with its description:

Mapping query : participant OR reg participant some cannabi-
noid
Description: “A process in which a cannabinoid participates, or that
regulates a process in which a cannabinoid participates.”

Table 1. Results table for RCV cannabinoid. The table shows a comparison of
the manual mapping of RCV to GO terms (manual column) with the automated map-
pings (auto column) resulting from an OWL query for processes in which a cannabinoid
participates, or that regulates a process in which a cannabinoid participates. The auto-
mated mapping found three additional GO terms compared to the manual mapping. In
this case, no manually mapped terms were obsolete in GO and all automated mappings
were approved.

name ID manual auto checked
black
listed

is
obsolete

regulation of
endocannabinoid
signaling pathway

GO 2000124 1 1 1 0 0

cannabinoid
signaling pathway

GO 0038171 1 1 1 0 0

endocannabinoid
signaling pathway

GO 0071926 1 1 0 0 0

cannabinoid
receptor activity

GO 0004949 0 1 1 0 0

cannabinoid
biosynthetic process

GO 1901696 0 1 1 0 0

2.2 Pipeline

Mapping queries were run using the ELK OWL reasoner [13] via calls to the
OWL-API [11]. The query and results processing pipeline was written in Jython [12].
All code, mapping tables and results were maintained in a GitHub repository [5].
The mapping was specified using a single tab separated values (TSV) file in which
each line maps an RCV term to an OWL-EL mapping query that includes a term
from GO, ChEBI, CL, Uberon or NCBI taxonomy [18]. Query results were used
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to generate a TSV file, allowing direct comparison of manual and automated
mappings (see table 1 for an example). We used the GitHub API to generate
tickets for each mapping, linked to the relevant TSV results file, which GitHub
renders as a table. This allowed easy manual review and editing by RCV cura-
tors at Roche who used the linked tickets to discuss mapping issues and record
the approval status of all mappings.

Mapping queries were selected, tested and the results reviewed against man-
ual mappings to decide which patterns were most appropriate. Once a mapping
query was chosen, corrections and/or additions to the GO were made where
results were wrong or incomplete. At this point, any clear errors in the man-
ual mapping were blacklisted. Review of automated mappings was then passed
to Roche who approved or blacklisted individual classes (see table 1 for an ex-
ample). When satisfied with the results, the corresponding GitHub ticket was
closed, thereby indicating the mapping as approved. Results approved by Roche
were combined to produce a new RCV mapping table1.

2.3 Gene set enrichment analyses

GSEA was performed using an open dataset comparing gene expression in adult
liver and embryonic cells of mice [14]. Genes were ranked according to how
much more highly they were expressed in liver vs embryonic cells and vice versa.
GSEA enrichment scores were computed using GSEA software from the Broad
Institute [19] with an up-to-date set of GO annotations to mouse genes 2. The
results were analysed using the Enrichment Map plugin for Cytoscape [16], which
provides a graphical representation of enrichment results.

3 Results

3.1 Mapping results

We developed mapping queries for 308/364 RCV terms. Over a third (104) of
the mapping queries were sufficient - meaning that no manual maintenance is
required. A further 40% of the mappings (148) had 10 or fewer additional manual
mappings (figure 1A) and most of these (114) had fewer than 5.

Mapping queries identified many GO terms that were not in the manual
mapping (figure 1B). In some cases (e.g., leukocyte activation), over 1000 new
mappings were found. Only 8 automated mappings had blacklisted terms, re-
flecting minor differences between the meaning of the mapping query and the
intended meaning of the RCV term. 56 terms were not mapped. Some were were
judged to be semantically equivalent to other RCV terms. The rest were rejected
as currently not mappable due to the lack of suitable terms or axiomatisation
within the GO. For example, RCV has terms for aerobic and anaerobic metabolic

1 Available from: https://github.com/GO-ROCHE-COLLAB/Roche_CV_mapping/blob/
master/mapping_tables/results/combined_results.tsv

2 Available from http://geneontology.org/page/download-annotations
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Fig. 1. Summary or mapping results A. Distribution of manual only mappings. X
axis = number of manual-only mappings. Y axis = Number of RCV terms. Over 80%
of mappings are completely automated or require less than 10 manual mappings. B.
Distribution of auto only mappings. X axis = number of auto-only mappings. Y axis
= Number of RCV terms. Many new mappings were uncovered by automation.

processes, but GO currently has no formal way to group these and no sustain-
able mechanisms for grouping them manually. Further formalisation of the GO
is likely to improve the number of RCV terms that can be mapped.

3.2 Testing the implication of automated mapping for gene set
enrichment analyses

We tested the the revised, semi-automated RCV mapping by performing GSEA
comparing the transcriptome of adult mouse liver against embryonic mouse cells
using a standard GO slim (Figure 2A), the original, manually mapped RCV
(RCV man; Figure 2B) and the new partially automated RCV GO mapping
(RCV auto; Figure 2C). Profiles of gene enrichment in liver compared to un-
differentiated cells are potentially useful benchmarks for the development and
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testing of stem cell derived liver in vitro systems increasingly employed in tox-
icology testing. Results were loosely grouped by experts at Roche to provide a
preliminary, biologically plausible interpretation. All approaches detected enrich-
ment to gene sets involved in cell division and gene expression in the embryonic
sample, but there were dramatic differences in detection of enrichment in the
liver sample.

GSEA with the standard GO slim detects enrichment in the liver to a few sets
of genes involved in metabolic processes that are known to be up-regulated in the
liver. GSEA with RCV man also detects enrichment to many more metabolic
processes that are specific to or upregulated in the liver, and to a much finer
level of detail. It also detects enrichment of genes involved in immune cell related
process, consistent with detection of the resident immune system in the liver.
The results of enrichment with RCV auto are similar, but provide much more
detail. For example, GSEA with RCV auto detects enrichment to gene sets in-
volved in detoxification (important for toxicology use cases) and a wider range
of immune cell processes. There is also increased overlap between enriched gene
sets compared to RCV man, but at a level that is potentially informative (see
edges between nodes in 2C). For example, there is overlap between sets of genes
involved in both chemotaxis and processes involving types of immune cell that
are known to be capable of chemotaxis.

3.3 Improvements to the GO

While GO has extensive axiomatisation linking processes to cells, anatomical
structures and chemicals, this is not always complete. In mapping from the
RCV to GO we found and corrected over 200 omissions in the axiomatisation.
This included missing links from processes to participant cell types, anatomical
structures, chemicals, cell components and transcript types. We also found and
corrected a number of errors, including errors in axiomatisation of developmental
processes that led to incorrect inferences for RCV anatomy terms.

4 Discussion and future directions

This work demonstrates how the logical structure of the GO can be used to
achieve biologically meaningful mappings between GO terms and terms from
external controlled vocabularies defined with reference to ryps of cells, chemi-
cals or anatomical structures. Mappings are straightforward to specify and the
reasoning system used is fast and scalable [13, 17]. All mappings that are fully
automated can be automatically updated as the GO changes, simply by running
the mapping pipeline. Errors found during manual review were sufficiently rare
that this step will not be used in future updates.

4.1 Improving the RCV mapping to GO

48% of mapped RCV terms have 10 or fewer manual mappings. We are review-
ing all of these cases to decide whether to drop manual mappings or whether
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Fig. 2. GSEA comparing expression between embryo and adult liver using gene sets
derived from the generic GO slim (Panel A), manually mapped RCV (panel B), and
semi-automated RCV (panel C). Red nodes indicate gene sets enriched in liver com-
pared to embryos. Blue nodes gene sets enriched in embryos compared to liver. The
size of the node is proportional to the size of the gene set. Connecting edge thickness
is a measure of the number of enriched genes in common between two gene sets.
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complete automation might be achieved by a different query strategy. In some
cases, a more complete mapping could be achieved by combining the results of
multiple mapping queries. For example, RCV terms for chemical metabolism are
all manually mapped to GO terms for both metabolism and transport. A more
complete mapping could be achieved by combining the results of separate OWL
mapping queries for GO transport and GO metabolic process 3.

4.2 Alternative views of the GO and its annotations

The OWL axioms used to automate RCV mapping to GO can also be used
to provide alternative views of the GO and its annotations. This is already
reflected in some of the newer functionalities of the GO browsing tool AMIGO,
which now displays inferred annotations to cell-types based on axioms in GO
recording where processes occur4.

4.3 Improving mechanisms for extending RCV

The system described here was designed to be lightweight and flexible, allowing
maximum interaction between the designers of RCV at Roche and GO editors
with minimal development overhead. Where new terms following mapping query
patterns already used, they can be added via the same mechanism.

The system described bears some relationship to TermGenie [6] which is al-
ready used to generate 80% of new GO terms. One possible approach to fulfilling
the needs of external groups for types of classification not included in the GO
would be to offer a TermGenie-like system to create bespoke terms.
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