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ABSTRACT 
I discuss and construct ontology mappings between differ-
ent ontologies of time. I show how you can use them as a 
new method to solve significant dynamics problems, by 
exploiting the properties of the ontology mapping. A 
unique feature of a nonlinear ontology mapping I propose 
is that it can rigorously treat infinitesimals as strictly finite 
computational quantities. The approach also suggests some 
novel, I believe intriguing, insights into the nature of time, 
particularly regarding “density” and “curvature” of time. 
The paper provides an in-depth case study in ontology 
mapping, offering some evidence that ontology building, 
mapping, and reuse is much a substantive issue, more than 
a matter of generic representation language and semantic 
tooling.  

Categories and Subject Descriptors 
H.4: Information Systems Applications – Miscellaneous.  

General Terms 
Theory, Algorithms.  

Keywords 
Time, ontology, mapping, signal analysis, dynamic systems 

INTRODUCTION 
Time is a very generic upper-level ontological concept. 
There are many different ontologies of time [1], but the two 
temporal ontologies most widely used [2, 3] in science and 
engineering are point-based: continuous time and discrete 
time.  In continuous-time systems, time is represented by a 
real-numbered parameter t ∈ ℜ. In discrete event-based 
systems, time is represented by a “step” variable S ∈ ℵ, i.e. 
an integer.  

Continuous and discrete approaches represent two very 
different ontological viewpoints on the same concept of 
time. They not only differ in appearance, but also come 
with radically different concepts and methods, witness the 
mathematical and computational analysis of continuous 
versus discrete systems, for which there exists a vast litera-
ture spanning several centuries (e.g., [4] and [5]).  
From the computational perspective, there is the additional 
problem that continuous analysis is based on the notion of 
derivatives and infinitesimal quantities (differential calcu-
lus dating back to Leibniz’s 1684 article [4]). As the com-
puter is an inherently discrete machine, computer methods 
for continuous systems invariably introduce approxima-
tions that are in fact a kind of systematic error (known as 
discretization or truncation error [2, 3]).  In this paper I 
pose – and solve – the problem: can we construct an ontol-
ogy mapping between continuous and discrete ontologies 
of time, which is both mathematically rigorous and compu-
tationally adequate, and is able to avoid systematic error in 
changing from one temporal perspective to the other?   
More simply: is it possible to reformulate any given form of 
continuous-time dynamics in discrete time, rigorously, 
without any compromise or computational approximation? 
The answer to this question is yes; the ontology mapping 
solution outlined in this paper entails a novel method that I 
call the T transform. Important characteristics of this new 
transform method are: (1) conceptually, it is a radical de-
parture from the traditional view and techniques regarding 
the relationship between continuous and discrete time; (2) 
it succeeds in fundamentally avoiding computer-introduced 
systematic error in handling differential calculus; (3) it has 
informational advantages, by generating certain important 
systems information directly that is not so easy to obtain by 
conventional methods; (4) it gives rise to several new and 
elegant discrete algorithms for systems analysis; and (5) it 
has an extremely wide spectrum of applications and gener-
alizations (even beyond time).  
I will go through these aspects below in brief. 
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“NAIVE DYNAMICS”: TEMPORAL 
ONTOLOGIES AND THEIR MAPPING  

Axiomatization of Time Ontologies  
Van Benthem [1] gives a tense-logical formalization of a 
great variety of temporal ontologies. His axiomatization for 
point ontologies of time is over temporal structures consist-
ing of a non-empty set of time points ordered by a binary 
precedence relation <. It contains the following shared 
axioms for discrete and continuous time:  
• TRANS: time ordering is transitive.  
• IRREF: the property of irreflexivity; together TRANS 

and IRREF model the (asymmetric) notion of the flow 
(or arrow or “river”) of time. 

• LIN: linearity, expressing that time structures have a 
single path (or river flow bed) without branching.  

• SUCC: time has no end point (continuing succession 
towards the future). 

The difference between discrete and continuous time 
comes with the choice of a final temporal axiom, either one 
of the following two options:   
• DENS: infinite divisibility of time, i.e. between any 

two time points there is always another one.  
• DISC: discreteness; time is not infinitely divisible, but 

has the property of “stepwise” succession. 
This suffices as axiomatization of the point-based temporal 
ontologies I consider in this paper. Van Benthem shows 
that this axiomatization is syntactically complete. He also 
shows that it admits of several models. Thus, real-
numbered time t ∈ ℜ (where the axiom DENS is implied 
by the stronger continuity axiom CONT) and discrete 
event-based integer time S ∈ ℵ (where as we shall see S 
indeed can be usefully read as “step”) are a specific model 
choice for the above ontological theories. However, these 
are by far the most common and useful ones in scientific 
practice, and that’s why I stick to them.  
Clearly, the above two formal temporal ontologies are 
rather concise and simple themselves. This turns out not to 
be the case for discrete-continuous ontology mappings, 
however. I will now proceed to show that (1) temporal on-
tology mappings are important general constructs with 
many practical applications and implications, but (2) they 
are not unique, as several different useful ontology map-
pings can be constructed.  

Standard Time Ontology Mapping  
Let us consider first the traditional approach to continuous-
discrete temporal ontology mapping, which is entrenched 
in today’s standard techniques for numerical analysis and 
simulation of system dynamics and evolution [2]. Typi-
cally, one assumes that the discrete time steps or events S = 
0, 1, 2, ... are embedded in continuous time t ∈ ℜ by as-
suming that the integer time point “1” (etc.) maps onto the 
real time point “1.000...” (etc.), as depicted in Figure 1. 
This looks very logical and natural indeed: formally the 

standard time ontology mapping between continuous and 
discrete time is (note: both ways) given by the simple lin-
ear function:  

t / τ =  S   or   t  =  Sτ,  so that  (1a)  
XS = xt/τ .    (1b) 

This equation is the ontological explication of the standard 
operating procedure in conventional real mathematical-
numerical analysis. Here, τ denotes the free (user-
selectable) parameter known as the “stepsize” in continu-
ous systems simulation.  

 
Figure 1. Traditional view on the mapping between con-

tinuous and discrete time. 
How does this linear ontology mapping work in practice? 
Let us take a look at the prototypical formulation of con-
tinuous dynamic systems, viz., the ordinary differential 
equation1  (ODE):  

d/dt xt =  f(xt)     (2) 
As this is an equation in continuous time involving, more-
over, infinitesimal calculus, it is not suitable for direct 
computer treatment. The standard approach then is to dis-
cretize the ODE (2) in time. The simplest choice to do so is 

                                                                 
1 It is conceptually interesting to reread Leibniz’s original article of 1684 

[4]. He clearly talks about dx and dt as finite differences, and then pro-
ceeds with stating the rules of differential calculus as if they are infini-
tesimals. He does not offer any justification; in actual fact his rules are 
incorrect for finite quantities (they neglect the higher-order differences 
that vanish in the infinitesimal case). He is sufficiently self-confident (or 
arrogant) to simply ignore this fundamental problem, and then saves the 
day by coming up with an important useful application example (he de-
rives the refraction law of Snellius directly from Fermat’s principle). So 
it seems he was lucky to live in ancient times as his article would be 
unlikely to survive any modern peer review. No wonder that people like 
the idealist philosopher Bishop Berkeley (1734) made fun out of the be-
lievers in this new calculus, deriding it as strange magic by juggling 
with different kinds of zeros (he added the wider point, against non-
religious rationalists such as Halley, that if you do believe in this weird 
calculus stuff (“ghosts of departed quantities”), you also rob yourself of 
the right to criticize matters of theology). Proponents, among them Ber-
noulli, Euler, Maclaurin, D’Alembert, etc. ultimately defeated him by 
striking back with proper theoretical foundations of the new calculus. 
Interestingly, this whole conceptual struggle, involving a long string of 
the brightest mathematical geniuses of their time, took more than one 
century and a half. 
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by dropping the infinitesimal limit in the definition of the 
derivative and invoking Eq. (1b). Then  

(xt+τ  - xt) / τ   =  f(xt)     (3a) 
or   

∆XS ≡  XS+1 - XS = τ f(XS)   (3b) 
Equation (3) is computationally a one-step forward differ-
ence, generally known as the Euler algorithm.  
The Euler formula is essentially a direct application of the 
standard continuous-discrete time ontology mapping of Eq. 
(1) and Figure 1 (where I have assumed that the step size τ  
= 1; this simplifies the bookkeeping and can be done with-
out loss of generality). It replaces the continuous dynamic 
system by a discrete-time one that is easy to compute (here, 
by a one-step forward recursion). It is not really used in 
practice, precisely because it nicely illustrates a key prob-
lem of the digital computation of continuous dynamics: it is 
inherently approximate (the systematic error mentioned 
earlier: the higher-order differences ignored by Leibniz can 
no longer be neglected in a finite computation).  
Nevertheless, Euler’s formula is rightfully seen as the 
grandfather of all ODE solving algorithms. Any ODE 
solver attempts to correct its shortcomings, lack of accu-
racy and sometimes also of stability, by including higher 
difference contributions (equivalently, orders of the Taylor 
expansion) up to a prespecified order. As there are zillions 
of ways to do this, each with specific advantages and 
drawbacks, this has become a computing art in itself. The 
famous Runge-Kutta algorithms, the universal workhorse 
to simulate continuous dynamic systems, are a case in 
point. However, this can only be done to a limited extent, 
as explained in a very accessible and practical way in [2]. 
In essence, the standard linear ontology mapping of Eq. (1) 
inherently and unavoidably introduces approximations in 
the digital computation of what basically are infinitesimal 
quantities.  

“Naive Dynamics”  
Although never stated this way, the key problem of the 
standard algorithms for continuous dynamics transformed 
to a computationally tractable discrete-time system is there-
fore the underlying assumption of a linear mapping be-
tween time ontologies.  
With an allusion to Hayes’s “Naive Physics Manifesto” 
(1978/85), one might say that what makes the standard 
linear ontology mapping attractive is that it leads to a sim-
ply understandable form of “naive dynamics” for complex 
(nonlinear) systems of the type (2), witness Eqs. (1) and 
(3). Equations (1) and (3) are both nice to have from the 
standpoint of naive dynamics. Unfortunately, scientific 
history has demonstrated that they cannot both be valid 
simultaneously. The standard approach then makes the 
choice that the linear time ontology mapping (1) is correct, 
but precisely this assumption invalidates the basic discrete 
Euler formula (3) and its descendants such as Runge-Kutta 

for infinitesimal calculus proper. Correcting for this is what 
makes the usual algorithms for continuous dynamics so 
complicated (or non-naive).  
Now, my aim is to retain in some form this idea of naive 
dynamics. I will do this in a novel way, in fact the precise 
opposite of the standard computational approach. Specifi-
cally, I will start from the principle of the correctness of an 
Euler-type formula as (3). The key reason is that, if you 
succeed in doing this, computation and prediction of con-
tinuous systems is extremely simple, since Eq. (3) is a one-
step forward difference in discrete time, and the whole fu-
ture is predicted (without any approximation in the sense of 
built-in systematic bias, as in the standard approach) by 
repeated application of (3).  
The necessary consequence of this alternative route is that 
one has to drop the correctness of the linear ontology map-
ping (1). However, as I will show, there is no principal 
reason why there can’t be alternative ontology mappings 
with beautiful and desirable conceptual and computational 
properties – but consequently they must be nonlinear with 
respect to time. In other words, you have to “bend” time.  

T: THE TRANSFORMATION OF TIME  

Probabilistic Embedding of Events in Time  
I now construct a new alternative class of temporal ontol-
ogy mappings by means of the following procedure that 
embeds discrete events S in continuous time t. Imagine that 
the time difference (in continuous time) between the occur-
rence of two subsequent (discrete) events is not fixed and 
constant, as in the traditional approach (cf. the constant τ in 
Eq. (1)), but actually is random. So, after the start event 
S=0 that occurs at some given start time t0 (taken to be t=0 
in the remainder), the discrete time events S >0 occur ran-
domly at continuous time points tS, and the time intervals 
between two steps T1=t1-t0, ..., TS+1=tS+1-tS are all random 
variables, governed by some given probability distribution 
(which I assume to be the same for all events).  

Accordingly, let P(t, S) be the probability that in the inter-
val [0,t] precisely S discrete events or steps have occurred. 
Then the time ontology mapping replacing Eq. (1) reads:  

 
Generally, this is a nonlinear ontology mapping, with re-
spect to both time variables t and S. Equation (4) actually 
represents a whole class of ontology mappings, because 
there are many choices for the probability function P(t, S).   

For this probability I now take a specific choice, namely:  

 

4



This nonlinear ontology mapping (xt = T(XS) in short) em-
beds discrete events in continuous time by means of a sto-
chastic process known as the Poisson process. Although 
fundamentally different from Eq. (1), it likewise has an 
elegant conceptual interpretation. The linear ontology 
mapping (1) essentially says that all discrete events occur 
totally correlated in continuous time: once we know the 
time instant of the initial event and the (fixed) waiting time 
constant τ between events, the time occurrence of all events 
is wholly fixed, carved in stone with military precision as it 
were (cf. Figure 1).  

In contrast, the nonlinear ontology mapping of Eq. (5) es-
sentially represents the opposite situation, in which all 
events occur independently and so are totally uncorrelated. 
This situation often occurs in reality. For example the arri-
val of incoming phone calls at a helpdesk is expressed by a 
Poisson process. Calls arrive not with fixed time intervals 
between them but irregularly; the probability distribution 
for the random time TS between two steps is a negative 
exponential, and the constant τ in Eq. (5) now represents 
the average waiting time between two subsequent events.  

What does this buy us? In essence, the time ontology map-
ping is a transform expression – the case of Eq. (5) I call 
the T or T transform – that transforms a continuous func-
tion xt into a discrete function XS. Transform methods are 
well-developed: they already stem from early 19th century 
mathematics, the Laplace and Fourier transforms probably 
the best known ones. Although mathematically demanding, 
their key idea is simple: if you can map the original prob-
lem (say, the ODE (2)) from the original space (here, con-
tinuous time) into a different problem in a new space where 
it is simple to solve, then you are done by simply back-
transforming the found solution to the original space. This 
is what for example the Laplace transform does: it trans-
forms differential equations from continuous time into sim-
ple-to-solve algebraic equations in frequency space. But 
you already find this transform idea in the solution of the 
mutilated chessboard problem, or in that of the children’s 
game called Nim.  

My transform idea expressed in Eq. (4) and in the T or T 
transform (5) is new and special in the sense that it trans-
forms a problem formulated in continuous time into one 
that is formulated in discrete time. Discrete problems are 
much more suitable for solution by a computer than con-
tinuous ones; once the discrete solution is found we simply 
back-transform it into the continuous solution we are actu-
ally looking for by using (4) or (5).2 That this idea practi-
cally works I am going to show now.  

                                                                 
2 For the real connoisseur, I mention in passing that the linear ontology 

mapping of Eq. (1) can be interpreted, like my T transform (5), as a spe-
cial case of the probabilistic transform (4). It is the limiting case in 
which the waiting-time distribution between events is the Dirac delta 
function δ(t-τ). Reworking Eq. (4) on this basis by using its Laplace 
transform, one is led to a generating function method known as the z 

Key Properties of the T Transform  
Some key properties of my T (T) transform between dis-
crete and continuous time are given in Table 1.  

Table 1. Properties of the T transform Eq. (5) 

Property 
No. 

Continuous-time 
function  

xt = T (XS) 

Discrete-time func-
tion  

XS =  T (xt) 
I. 1 (constant) 1 (constant) 

II. t S 
III. t2 S(S-1) 
IV. t3 S(S-1)(S-2) 
V. tn S! / (S-n+1)! 
VI. eAt (1 + A)S 
VII. A xt + B yt A XS + B YS 
VIII. d/dt xt ∆ XS ≡  XS+1 - XS 
IX. dn/dtn xt ∆n XS 

X. ft ≡ yt × xt   
FS =  

∑n=0
n=S [S!/((S-n)!n!)]  
 ∆S-n Y0  × Xn 

 
Proofs. There are several possible derivations of the prop-
erties in Table 1, but they require some background in real 
mathematical analysis. Property I immediately follows 
from the observation that the sum of P(t, S) over all steps 
equals unity by definition, because it is a probability func-
tion. Property VII also follows immediately by direct alge-
braic manipulation. To prove property VIII, we differenti-
ate both sides of Eq. (5) with respect to t and rearrange 
terms at the right-hand side, with a simple change of dis-
crete-time variable S. Property IX then follows (for exam-
ple) by repeating this procedure and complete induction 
towards the order of differentiation. Properties II-V all fol-
low from differentiating Eq. (5) and invoking I, VIII and 
IX. Finally, properties VI and X are discussed in more de-
tail in the next section in the context of various ODE appli-
cations. □  
The first property (No. I) is interesting in that it conceptu-
ally implies that any constant of the motion in continuous 
time (think of energy, momentum, angular momentum, 
probability, flux) is also a constant of the motion in discrete 
time. The second property (No. II) states that linear func-
tions in continuous time transform to linear functions in 
discrete time. These are properties that the nonlinear ontol-
ogy mapping (5) shares with the linear one of Eq. (1).  

                                                                                                           
transform, which in digital control theory is also sometimes called the 
discrete Laplace transform. It directly yields the linear ontology map-
ping of Eq. (1b). Hence – although this is hardly ever explicitly recog-
nized – also the standard numerical approach using the linear ontology 
mapping Eq. (1) is fundamentally based on a transform idea.  
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Other properties are unique to my T transform (5). In 
particular, continuous-time functions map onto similar (e.g. 
same-order polynomials, cf. properties III-VI) but not iden-
tical functions in discrete time. This is in stark contrast to 
the assumption in the standard received view that employs 
the same function in both continuous and discrete time (cf. 
Eq. (3a)). Property VII says that the T transform is a linear 
transform3.  
Properties VIII and IX are the crucial ones: the T transform 
maps the derivative d/dt onto a finite first-order discrete 
forward difference ∆. Hence, Euler-type formulas similar 
to (3) will be correct under the T transform. Moreover, this 
extends to the higher-order derivatives, which are simply 
found by repeated application of the finite forward differ-
ence ∆. As a consequence, a beautiful and important prop-
erty of the nonlinear time ontology mapping (5) is that it in 
discrete time produces the higher-order derivatives of con-
tinuous time, one by one and exactly. The production of the 
XS values in discrete time yields a tableau (see Figure 2), 
by simple subtraction or addition, that contains all desired 
information.  

 
Figure 2. The T transform yields a tableau that contains 

the discrete solution to derivatives of any order. 
If for example xt denotes the position in a space at a certain 
time, the tableau not only gives the solution for the location 
(coefficients XS) but it simultaneously solves the question 
as to its velocity (∆XS), acceleration (∆2XS), etc. In addition 
it is able to reconstruct, by using only the T transform 
equation (5), the values of the continuous variables at any 
desired point in continuous time t. These are all major in-
formational and computational advantages that show the 
power of the T transform temporal ontology mapping.  

Leibniz Reversed 
Consequently, we have achieved the earlier stated aim of 
“naive dynamics” by showing the validity of the one-step 
                                                                 
3 Perhaps this sounds a bit confusing, but linearity is only a relative no-

tion. As stated earlier, the T transform is nonlinear with respect to the 
time variables t and S (see Eq. (5)). With respect to the temporal func-
tions XS and xt, however, it is linear, in accordance with property VII.  

forward difference formula (3b) as the correct expression 
for differentiation of a continuous variable. In a sense, we 
have achieved this by conceptually reversing Leibniz. 
Leibniz talked about infinitesimals as finite quantities, and 
subsequently invented the correct rules of differential cal-
culus. We took differential calculus, and subsequently in-
vented a temporal ontology mapping that makes it actually 
correct to treat infinitesimals as finite quantities, just by 
switching from continuous to discrete time! 

A FEW APPLICATIONS AND 
IMPLICATIONS 

Computer Right, Man Wrong (Save Euler)  
I first show how you can solve large-scale linear differen-
tial systems by temporal ontology mapping. This turns out 
to have an interesting side implication on the conceptual 
interpretation of what algorithms do.  
A widely used special case of the ODE (2) is the linear 
system:  

d/dt xt = A xt     (6) 
This equation also describes dynamic systems in many di-
mensions; then, A is not to be interpreted as a one-
dimensional constant (scalar) but as a matrix. The deriva-
tion below is then generally valid for any number of di-
mensions.  
To solve this by ontology mapping, we first transform the 
problem from continuous time to discrete time. Using 
property VIII of Table 1, the discrete version of Eq. (6) is:  

∆ XS =  A XS      (7) 
 
Next, we construct the solution in discrete time starting 
from the known initial condition x0 = X0, and repeatedly 
applying the forward difference definition of the operator 
∆. In effect, the whole discrete solution is stepwise pro-
duced (also in many dimensions) by the Euler algorithm 
(3b). From Eq. (7) it is easy to see that the discrete solution 
is:  

XS+1 = (1 + A) XS  ⇒  XS = (1 + A)S X0  (8) 
Finally, this solution is back-transformed to continuous 
time by using Eq. (5). In the general case this can be done 
computationally by various methods (e.g. by successive 
sequences of one-step recursions or, parallelized, by matrix 
methods), where as a bonus you have a free choice for the 
time points t you are actually interested in. In the present 
case, the continuous solution is just a matter of simple table 
look-up, see property VI in Table 1. Hence, the ontology 
mapping method solves the dynamic problem (6) by first 
transforming the problem to a new (discrete) space, next 
solve it there, and then transform this solution back to the 
original (continuous) space, where it reads:  

xt =  eAt x0      (9) 
So, we have solved a problem involving infinitesimal cal-
culus in a strictly discrete fashion, not by directly attacking 
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the computation of derivatives in an approximate fashion 
(which is the standard way of doing it), but indirectly by 
changing the problem space first. I mention in passing that 
the above also yields a proof of property VI in Table 1: just 
insert Eq. (8) into Eq. (5) and carry out the summation.  
The case discussed here has several important general ap-
plications. For example, it applies to both random walks 
and master equations; both have many practical applica-
tions in many different disciplines. As a bonus, the T trans-
form proves that they are their mutual discrete and con-
tinuous-time equivalents, see also [6].  
A possibly even broader application is that it is applicable 
to the modern state-space approach to control systems the-
ory: adding a control signal term to Eq. (6), i.e. a function 
explicitly dependent on t, yields the fundamental systems 
formulation underlying control engineering of multi-
dimensional continuous systems. The methods developed 
in this paper open up the opportunity to treat such systems 
by strictly discrete computer methods.  
The above results give some (I believe entertaining) reha-
bilitation of the Euler algorithm. Let me quote a statement 
from [2], a remark that is prototypical for any modern text-
book treatment of numerical methods: “There are several 
reasons that Euler’s method is not recommended for practi-
cal use, among them, (i) the method is not very accurate 
(...), and (ii) neither is it very stable” ([2], p. 704). In con-
flict with this statement, the dynamic problem (6) has been 
solved here exactly by the Euler method. However, you 
should interpret the results of the algorithm not as rough 
direct estimates of the continuous-time point solution (see 
Eq. (3a), the standard interpretation). Instead, it is to be 
seen as an indirect method producing the exact solution, 
however, in discrete time (according to Eq. (3b)). In con-
clusion, (1) evasive maneuvers do solve problems, and (2) 
the computer got it all right all these years, but man’s con-
ceptual interpretation of its outputs has always been wrong 
(except for Euler, of course).   

Shoham’s Extended Prediction Problem Does 
Not Exist 
In his book “Reasoning about Change” (1988), Shoham 
worries that the usual differential dynamics (cf. Eqs. (2) 
and (6)) only gives a prediction of an infinitesimally small 
time step forward from the considered current time point t. 
So how is it actually possible at all to make predictions 
over extended and finite periods of time on this basis? He 
calls this the extended prediction problem. My ontology 
mapping gives a direct solution to this: it turns the deriva-
tive into a strictly discrete and finite one-step forward dif-
ference into the future. Once you have solved this finite 
and discrete problem, you simply transform its solution 
back for any desired time t using the T transform (5). The 
extended prediction problem thus seems to satisfy the 
quoted Bishop Berkeley 1734 characterization concerning 
“ghosts of departed quantities”.  

Nonlinearity and the Curvature of Time:  
Bend It Like Beckham 
The next important  step is to show that the T transform 
method also handles nonlinear dynamics well. This gives it 
a major advantage over other transforms such as the 
Laplace and z ones. I will give a basic example of this, by 
considering a special case of the ODE (2), namely:  

d/dt xt = A xt (1- xt )    (10) 

which is generally known as the logistic equation.  

Logistic equation models. Varieties of it are widely used 
in practice, for example in population models of competing 
species in ecology. In one dimension, the linear term repre-
sents exponential growth, but the nonlinear (quadratic) 
term models self-limiting effects: lambs eat grass, but if 
there are too many in a territory (outside paradise), their 
population growth is ultimately restricted due to resource 
limitations. In more dimensions, the logistic equation can 
model interactions between species: lions eat lambs, but if 
they eat too many, first the number of available lambs will 
drop, and ultimately their own population numbers will go 
down. It is easy to imagine that such models often lead to 
(nonlinear) oscillatory cycles in population growth, with 
time delays between those of interacting species.  

Solving the nonlinear logistic system (10) follows the same 
transform procedure as discussed above. Now, however, 
we have to use property X of Table 1 for its time transfor-
mation. This property might seem mathematically complex, 
but it is actually a discrete convolution that is computation-
ally very simple to handle (it’s just a sequence of basic 
additions and multiplications). Property X can be formally 
proven by (rather tedious) algebraic manipulation, properly 
rearranging terms at the right-hand side (a much more ele-
gant derivation uses symbolic operator algebra, but this is 
beyond the space of this article). This results in an analyti-
cal solution of the nonlinear ODE (10)  in discrete time:  

 
The first term of this solution gives the linear part (as dis-
cussed above), and the second term yields the nonlinear 
effects. Again a variant of the Euler-type algorithm is 
suited to the task of prediction: from Eq. (11) it is easy to 
see that the discrete solution XS obtains by successive sin-
gle-step forward recursions starting from the known initial 
condition X0 and then going forward in time: S=1, next S=2 
etc. The probabilistic T map (5) then delivers the solution 
in continuous time for any desired time point t.  

It is instructive to compare the solution (11) of the continu-
ous ODE (10) with (i) the discrete solution (8) of the linear 
system (6), and with (ii) the nonlinear discrete dynamic 
system that is usually seen as its discrete analog (and there-
fore is known as the logistic map):  
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XS+1 = A XS (1 – XS)     (12) 

 This logistic map is famous because it is more or less the 
simplest system that exhibits chaotic dynamic behaviour 
(in contrast to the logistic ODE). Again, there is a linear 
term and a quadratic nonlinearity, now in discrete time. But 
there is an essential structural difference between the dis-
crete solution (11) to the logistic ODE on the one hand, and 
the linear system (8) and logistic map (12) on the other 
hand. The latter are iterated maps, i.e., result from repeated 
function application; to obtain the value at the next time-
point one only needs the preceding timepoint.  

In contrast, Eq. (11) shows that in the solution of the logis-
tic ODE all previous time points are involved. So, this con-
tinuous dynamic system has a memory in discrete time, 
even though this is not at all evident from the ODE formu-
lation (10) that involves a single continuous timepoint. Al-
though they share the name, the logistic ODE and the logis-
tic map are totally different in their dynamic behaviour.   

Lorenz chaos. Property X of Table 1 also enables to solve 
in discrete time the well-known Lorenz model (1963), de-
veloped to better understand atmospheric dynamics for 
long-range weather prediction. It became prominent be-
cause it was the first demonstration of the occurrence of 
chaotic behaviour in deterministic systems, with a so-called 
strange attractor (the famous “butterfly” shape to which the 
system tends in phase space). The Lorenz model is a simple 
3D system with quadratic-type (in fact, bilinear) nonlineari-
ties. So, property X directly applies, and the discrete solu-
tion of the Lorenz model has the same structure as Eq. (11).  

In general, nonlinearity in continuous dynamics has the 
effect that it “bends like Beckham” the solution in discrete 
time: in contrast to the linear system Eq. (8), all values at 
time points before S play an explicit role in the full solution 
at time S, although the solution itself can always be com-
puted by a one-step forward algorithm that also maintains 
the normal causal order of events, both in continuous and 
discrete time.  

Preview of Coming Attractions 
It is probably most interesting here to briefly investigate 
the impact on the structure of time resulting from nonlinear 
dynamics. Namely, the above methods and results suggest 
some intriguing conceptual (or if you wish, philosophical) 
insights into the nature of time, particularly regarding 
“density” and “curvature” of time. 

Consider the nonlinear differential equation (2) in general 
and how it changes under the T temporal ontology mapping 
(5). The left-hand side T(lhs) is easy: according to property 
VIII it always maps onto a simple one-step forward differ-
ence. The right-hand side involves a composite function 
f(x(t)) that is generally nonlinear. Taking the transform 
T(rhs) changes our ontological view on the dynamic world 
in two stages:  

• First, it changes the function f, seen as a function of x 
only, into a similar but not identical function F (wit-
ness for example the properties III-VI and X). This is 
already an important difference with the standard ap-
proach depicted in Figure 1.  

• Second, it also changes the function x seen as a func-
tion of t (since the same properties apply again). 

If we attempt to visualize this latter effect, we get a picture 
radically different from Figure 1. What happens is that the 
average density of the occurrence of (discrete) events is not 
constant but changes over the (continuous) time axis.  

You might visualize this by imagining that the discrete time 
axis gets curved, and in continuous time you only see its 
projection onto the continuous time axis (see Figure 3). It is 
actually not difficult to find examples where the discrete-
time “curvature” becomes so strong that it creates a singu-
larity in (note: finite) continuous time.  

Thus, the metaphor of the flow of time as a river [1] gets 
strangely bent due to nonlinearities: it’s possible to create 
something like a black hole in the river bed of the timeline!  

 
Figure 3. The T temporal ontology mapping may lead to 

flows of time that are “curved”.  

UPPER-LEVEL GENERALIZATIONS 
This paper only outlines a small fraction of the results I 
have developed concerning nonlinear ontology mappings 
between time, and could only hint at the underlying 
mathematical proofs and algorithms. A few final general 
remarks are in order.  

The uses of “old” science. First, the whole theory of tem-
poral ontology mapping can be founded upon various treas-
ures stemming from rather ancient mathematics. Much of it 
has more or less become extinct and superseded by modern 
computer (in fact, number crunching) approaches, and as a 
result is not treated anymore in modern textbooks on 
numerical methods. Specifically, this theory can be set up 
in a very elegant and concise way by means of symbolic 
operator algebra [3] as you find it in the textbook by Boole 
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[5] (the first edition was from 1860, by the way). What I 
actually find gratifying is that these methods are not just 
ancient, but if you develop them further as I tried to do in 
this paper, they can be actually made ready for today’s in-
telligent system-style computing, and made valuable be-
yond popular number crunching styles of computing. A 
few examples have been given in this paper.  

Computational complexity. An issue not discussed in this 
paper is the computational complexity of the algorithms 
related to the T transform. Generally, they are of low-
degree polynomial complexity. The calculation of the T 
transform (5) itself is of order O(N2), where N is the num-
ber of timepoints considered (same order as matrix multi-
plication; this also applies to the inverse transform, as T 
turns out to be a so-called orthogonal transformation). The 
computational complexity of the solution of ODEs is com-
monly measured in terms of the number of function evalua-
tions (the right-hand side of Eq. (2)). Then, the T transform 
method of solution is of linear complexity in time, cf. Eq. 
(11); I note that this is also true in the general case. 

AI temporal reasoning and android epistemology. The 
present work has important differences with respect to 
much of the work in AI temporal reasoning (see e.g. [7]) in 
terms of focus and assumptions. The present work uses 
standard point algebra from mathematics, and therefore 
interval algebras and axiomatizations (such as Allen’s, see 
also [1] and [7]) are not really relevant here. Important in 
my approach is that time is a metric space, i.e. a distance 
measure can be defined (in AI temporal reasoning usually 
called duration information). Another important difference 
is the type of tasks considered. AI temporal reasoning has 
spent much effort on constraint-based algorithms for estab-
lishing (partial) temporal ordering, possibly under incom-
plete or uncertain information. In contrast, this paper as-
sumes full linear ordering in time (this is precisely what the 
variable S expresses), and focuses on tasks of prediction 
and control (in line with physics and mathematics). This 
paper shows that also in the point approach to temporal 
reasoning a lot of interesting progress can still be made.  
 
If one refrains from delving into the mathematics, it yields 
some conceptual consequences for “android epistemology”. 
Androids (computers, robots and other discrete machines 
such as presumably StarTrek's Mr. Data) live in a discrete 
spacetime. Humanoids seem to live in a continuous space-
time. So they inhabit ontologically speaking fundamentally 
different worlds. One might think that continuous beings 
can do all kinds of things in their spacetime that discrete 
beings cannot do in theirs – since continuous spacetime has 
many more points one can do something in or at than dis-
crete spacetime. This paper shows this is not true: if they 
are sufficiently intelligent, discrete beings can do anything 
continuous beings can. Being “intelligent” can even be 
mathematically expressed here: the reasoning assumption 

that spacetime has characteristics of randomness, and still 
is causally ordered, according to Eq. (5).  
Above I discussed things from the perspective of time. 
Surely this is a key top-level ontology concept. However, 
my approach and methods also work for types of independ-
ent variables other than time. Other continuous variables 
can be formally discretized in this way as well. For exam-
ple, one can in this manner also treat the concept of space.  
 
Ontology: content vs. representation. Finally, the paper 
has provided an in-depth case study in ontology mapping. I 
submit that this provides some evidence that ontology 
building, mapping, and reuse is much a substantive issue, 
more than a matter of generic representation language and 
semantic tooling. I note that this is already the case for such 
a high-level, generic, common, and commonsensical con-
cept as time that does not depend on a specific domain. 
Substantive or content issues will be even more strongly 
present in task and domain specific ontologies. But in the 
end this is where the real semantic and web intelligence 
applications will be. This is perhaps a sign that the seman-
tic research community at some point cannot avoid signifi-
cant substantive issues in Web ontology, and has to be 
careful about (over)emphasis of generic representation and 
tooling issues without adequate domain grounding. Or, be 
sufficiently moderate in its expectations of the size of its 
own role in building the Semantic Web.  
Acknowledgment. This work has been supported in part by a 
travel grant from the KnowledgeWeb Network of Excellence 
(EU-IST-2004-507482). 
 

REFERENCES 
[1] Van Benthem, J.F.A.K., The Logic of Time, 2nd ed., 

Kluwer, Dordrecht, NL (1991). 
[2] Press, W. H., et al., Numerical Recipes – The Art of 

Scientific Computing, 2nd ed., Cambridge University 
Press, Cambridge, UK (1992). 

[3] Dahlquist, G., and Björck, Å., Numerical Methods, 
Prentice-Hall, Englewood Cliffs, NJ (1974).  

[4] Leibniz, G.W., Nova Methodus Pro Maximis et Mini-
mis, Acta Eruditorum, Vol. 3,  pp. 467-473 (1684); 
English transl. Struik, D.J., Ed., A Source Book in 
Mathematics, pp. 272-280, Princeton, NJ (1986). 

[5] Boole, G., A Treatise on the Calculus of Finite Differ-
ences, 2nd ed., Macmillan and Company, UK, (1872); 
reprint Dover, New York, NY (1960). 

[6] Akkermans, J.M., and Běták, E., Annals of Physics, 
Vol. 194, pp. 148-172 (1989). 

[7] Hayes, P., A Catalog of Temporal Theories, Technical 
Report (1995), http://www.ihmc.us/users/phayes/.  

 

 

9




