
Abstract

Although many approaches to knowledge-based
configuration have been developed, the genera-
tion of optimal configurations is still an open is-
sue. This paper describes work that addresses this
problem in a general way by exploiting an analo-
gy between configuration and diagnosis. Based on
a problem representation consisting of a set of
ranked goals and a catalog of components, which
can contribute in combination to their satisfaction,
configuration is formulated as a finite constraint-
satisfaction-problem. Configuration is then solved
by state-search, in which a problem solver selects
components to be included in an appropriate con-
figuration. A variant of Conflict-Directed A* has
been implemented to generate optimal configura-
tions. To demonstrate its feasibility, the concept
was applied, among other domains, to personal-
ized automatic training plan generation for fitness
studios.

1 Introduction

Besides diagnosis, the task of configuration has been one
of the earliest application areas of work on knowledge-
based systems, initially in the form of rule-based “expert
systems”, for instance in [1]. Today, systems for automat-
ed configuration have reached maturity for practical appli-
cations, as shown in [2], [3], and [4]. Despite this success,
developing algorithms for computing optimal or opti-
mized configurations with general applicability still de-
serves more research efforts.

Driven by a number of different configuration tasks, we
developed GECKO (Generic constraint-based Konfigura-
tion), a generic solution to the configuration problem that
can be specialized to different application domains and
that, among other objectives, aims at supporting the gener-
ation of optimal configurations.
In a nutshell, the solution exploits an analogy:

 The configuration task can be seen as searching
for an assignment of active or non-active to the
components in a given repository, representing
whether or not a component is included in the
configuration, such that it achieves some goals in
an optimal way

 Diagnosis has been formalized as a search for an
assignment of behavior modes (normal or fault_x)

to a set of system components such that it is op-
timally compliant with a set of observations.

Based on this analogy, we exploit a search technique that
has been developed as consistency-based diagnosis, see
[5]), and as a generalization for optimal constraint satisfac-
tion, called conflict-directed A*, see [6]

In the following section, we discuss related work on
configuration systems. In section 3, we present some ex-
amples of configuration problems that we tackled using
GECKO and that will serve for illustration purposes. Next,
we introduce our formalization of the configuration task
and the key concepts of GECKO. In section 5, we discuss
the analogy between diagnosis and configuration, the ap-
plication of CDA*, variants of utility functions and how
they relate to different types of configuration applications.
The results are shown in section 6. Finally, our current
work and some of the open issues are discussed.

2 Knowledge-based Configuration

Applications of configuration are immensely diverse,
but they all share a number of common problems, such as
compliance with domain knowledge, size of the solution
space, and the resulting complexity of the problem solving
task. It requires knowledge-based approaches to support
the problem-solving activities, such as product configura-
tion or variability management see [3] and [4].

Current research on configuration, especially for large
applications, tends to neglect global optimization, focusing
on local optimization, user interaction, or aiming at pro-
ducing “good” solutions, see [3] and [7].

The focus of this paper is a generic, constraint-based
configurator (GECKO) for solving optimal configuration
problems. The core of GECKO is a variant of Brian Wil-
liams’ Conflict-Directed A* (CDA*, [6]). The solution
works on a generic representation of configuration
knowledge and tasks. We consider the task of generating
configurations as similar to consistency-based diagnosis.
Instead of assigning modes for fault identification as in [5],
GECKO assigns the activity to components contributing to
goals. A configuration is consistent if all task-relevant
goals are satisfied. The quality of a configuration is given
by the level of goal satisfaction and the amount of resource
consumption. Our approach allows the arbitrary selection
of optimization criteria, like minimal resource consump-
tion or maximal goal contribution. In the presented case
study, our aim was to maximize the number of satisfied
goals under consideration of available resources.

Configuration as Diagnosis: Generating Configurations with Conflict-Directed A*

- An Application to Training Plan Generation -

Florian Grigoleit, Peter Struss

Technische Universität München, Germany
email: {struss, grigolei}@in.tum.de

Proceedings of the 26th International Workshop on Principles of Diagnosis

91

3 Application Examples

Configuration problems are almost ubiquitous in modern
life, with applications as different as creating a customized
computer as done by R1 in [1] and adapting the system
functions of a car, see [8]. To illustrate the versatility of
GECKO, we present three applications.

3.1 Car Configuration

Today, car manufacturers offer a vast number of models,

model variants, and equipment options to their customer.

The resulting complexity does not only prohibit a compre-

hensive exploration of the solution space, but is also likely

to provide customers with sub-optimal car variants. A do-

main model for car configuration was created and mapped

to the GECKO concepts, which are presented in 4.2([9])

3.2 User Interface Configuration

The Beam Instrumentation group at CERN is responsible

for the design and implementation of particle beam meas-

urement systems. These systems are specifically built for

each case, resulting in extensive work on constructing

them. While the generation of the GUIs, that is the imple-

mentation, is automated, the configuration is not. This task

currently requires an expert to select libraries, graphical

elements, and data sources and to parameterize them. Such

tasks are typical configuration tasks and thus enable the

automation of the configuration of the GUIs by GECKO

([10]).

3.3 Training Planning in Sport Science

At a first glance, training planning may appear to be a typ-
ical scheduling task, instead of a configuration problem.
Taking a closer look shows that it mainly involves activi-
ties we consider the core of configuration: selecting, pa-
rameterizing, and arranging components to satisfy goals,
whereas assigning time slots to the selected exercises is, in
general, fairly straightforward

A trainer has to analyze the biometric state of his train-
ee, such as fitness or age, to consider constraints on the
created training plan, for example duration or available
equipment, and to select and order appropriate exercises.

The sheer number of existing exercises and the size of
the solution space show that training planning includes
optimization. In general, a trainer tries to maximize the
training effect within the available time and under consid-
eration of the trainee’s goal and abilities. The specializa-
tion of GECKO to training planning is described in section
5.

4 GECKO - Foundations

4.1 Intuition

With GECKO, we aim at developing a generic solution to
configuration problems, which can be tailored towards a
particular domain by specializing some basic classes and
creating a knowledge base in terms of domain-specific
constraints. Its design is driven by the following objec-
tives:

 supporting both automatic and interactive con-
figuration;

 enabling the use of the system without deep do-
main knowledge, esp. about how high-level goals
of the user break down to more detailed and
technical ones;

 handling also soft domain constraints and user
preferences, and

 offering support to the user by providing expla-
nations for generated parts of the configuration
and for unavailable options and by suggesting re-
visions to resolve inconsistencies.

However, this paper focuses on the basis, a generic
problem solver for (optimal) configuration. Determining
the solution – the configuration - means selecting a set of
instances of given types of elements - components -, per-
haps with certain attribute values and organized in a par-
ticular structure. The configuration has to

1. satisfy a set of high-level user goals,
2. be compliant with particular attributes and re-

strictions supplied by the user,
3. be realizable both in principle (i.e. not violating

domain-specific restrictions on valid configura-
tions),

4. under consideration of available resources, and
5. optimal (or near optimal) according a criterion

that reflects the degree of fulfilling the goals and
the amount of resources consumed.

Configurations can be physical devices, such as tur-
bines, communication systems, and computers, abstract
ones like a curriculum or a company structure, or a soft-
ware system. In contrast to a design task involving the
creation of new types of components, configuration as-
sumes that all required Components are instances of com-
ponent types from a repository ([11]). This leads to differ-
ent kinds of reasoning involved: innovative design has to
verify that its result satisfies the goals by inferring that
they achieved by the system behavior based on behavior
models of the components, whereas for a configuration
task, it is assumed that behavioral implications of aggre-
gated components have been compiled into explicit inter-
dependencies of Goals and Components. As a result, soft-
ware systems for configuration are typically based on
knowledge encoded as constraints or rules, as in [1] and
[2], and do not require the exploitation of behavior models.

4.2 Core Concepts

The core concepts of GECKO are derived from the de-
scription above, as depicted in Fig. 1:

 Goals express the achievements expected from a
specific configuration. They may have an
associated priority dependent on the task and
different criteria for goal satisfaction.

 Components are the building blocks of the Con-
figuration. They may be organized in a type hier-
archy (for example, Lithium battery is a voltage
source). In addition, there may be Components
that are aggregations of lower level components.

 A Task specifies the requirements on a configura-
tion from the user’s perspective. It is split into
three kinds of restrictions:

Task
= TaskGoals TaskParameters TaskRestrictions.

Proceedings of the 26th International Workshop on Principles of Diagnosis

92

TaskGoals are a collection of Goals the user is aware of
and which can be (de)activated or prioritized by the user.
Each TaskGoaln is stated as a restriction Task-
Goaln.Satisfied=T in the Task description.

While TaskGoals represent objectives a user requires,
TaskParameters associate values to properties of the
Task, hence have the form TaskParameterk=valuekj. For
instance, in vehicle configuration, the target country may
have an influence on daytime running lights being manda-
tory. However, these implications are not drawn by the
user (who only provides the country information), but by
the domain knowledge represented in the system.

In contrast, TaskRestrictions refer explicitly to the
choice of Components and their attributes, e.g. that for the
user, a convertible is not an option or that the engine
should be a Diesel engine.
A specific, and often essential, TaskRestriction can be in-
cluded:

 A ResourceConstraint limits the cost of the con-
figuration, which may be indeed money (car con-
figuration) or time (in training plan configura-
tion), but also computer memory etc. Components
have to have an attribute that allows calculating
the resources needed for the entire configuration
(often as the sum).

4.3 Constraints on Configurations

The configuration knowledge of a particular application
comprises the domain-specific specialization and instantia-
tion of Goals, Components (possibly including component
attributes and their domains), and relevant TaskParameters
and their domains as well as constraints that capture inter-
dependencies among these instances. Dependent on which
kinds of objects are related, we distinguish between the
following (illustrated in Fig. 1):

Fig. 1 Task constraints in GECKO

 TaskParameterGoalConstraints express that

certain TaskParameter values may exclude or re-
quire certain goals

 GoalConstraints relate goals to each other, in
particular for refinement of higher-level (esp.
TaskGoals) to lower-level ones, such as goals re-
lated to various muscle groups that should be ex-
ercized, although the user is not aware of this

 GoalComponentConstraints capture essential
configuration knowledge, namely whether and
how the available components contribute to the
achievements of goals

 ComponentConstraints establish interdependen-
cies among components (and their attributes): a
component may be dependent on or incompatible
with the presence of another component in the
configuration

 TaskParameterComponentConstraints may in-
clude or exclude certain components based on
TaskParameter values

A fundamental constraint type is
 Requires (x, y)
which is defined by
 x.active=T y.active=T
and used to express dependencies among goals (e.g. refin-
ing a goal to a set of mandatory sub-goals) and compo-
nents (e.g. cruise control requires automatic transmission)
and as the fundamental coupling between goals and com-
ponents (to achieve high-speed driving, an engine of a cer-
tain power is needed). Furthermore, in order to express that
several goals or components provide some partial contribu-
tions that jointly result in the satisfaction of a goal (or es-
tablish the preconditions of a component), we introduce
the concept of a choice, which can also fill the role of y in
a Requires-constraint. A choice is given by a relation
 GoalChoice Goals ContributionDom
or
 ComponentChoice Components ContributionDom,
where ContributionDom specifies a set of values for quan-
tifying how much a goal or component contributes to the
satisfaction of the choice and needs a zero element and an
operator to add up contributions (e.g. addition of inte-
gers). The idea behind choices is implemented by three
kinds of constraints. The degree of the satisfaction of a
(component) choice is given by the combined contribu-
tions of the active components of the choice:
 Choice.satLevel = Choice.goal.actContribution
and
 Choice.goal.actContribution =

Choice.goal.contribution IF goal.active=T
zero IF goal.sctive=F .

The choice is satisfied, if the satLevel lies in a specified
range, satThreshold:
 Choice.active = T
 Choice.satLevel Choice.satThreshold .

This allows implementing not only a minimum level as
a precondition for the satisfaction of a choice, but also a
maximum. Preventing “over-satisfaction” may not be a
common requirement, but in the fitness domain, one may
want to restrict the set of exercises that impose a load on a
particular muscle group.
Another predefined general type of constraint is

Excludes (x, y)
defined by
 x.active=T y.active=F
to express conflicting goals, incompatible components, and
TaskParameterGoal/ComponentConstraints (e.g. high
body weight may rule out certain exercises).

The application-specific configuration knowledge is,
thus, basically encoded as a set of the constraints explained
above. This, together with the domain-specific ontology
(as a specialization of the basic GECKO concepts, includ-
ing choices, and associated attributes) and, perhaps, specif-
ic contribution domains and operators, establishes the con-

Proceedings of the 26th International Workshop on Principles of Diagnosis

93

figuration knowledge base, called ConfigKB in the fol-
lowing.
We make some reasonable fundamental assumptions about
ConfigKB:

 Each potential TaskGoal is supported: it is the
starting node of a connected hyper graph of Re-
quires constraints that includes components, i.e. it
actually needs a (partial) configuration in order to
be satisfied (which does not mean it can actually
be satisfied).

 Closure assumption: the encoded interdepend-
encies, esp. the Requires constraints, are com-
plete. In other words, if all constraints Requires
(x, y) associated with x are satisfied by a configu-
ration, then x is satisfied.

 It is consistent.

4.4 Definition of the Configuration Task

The goal is to select an appropriate subset of the available

components, which we call the active ones, and possibly

determine or restrict their attributes.

Definition 1 (Complete Configuration)
A configuration

PARCONFIG = (ACTCOMPS, COMPATTR)

is complete if includes exactly the active components:

comp ACTCOMPS comp.Active = T.

GECKO has to generate a configuration PARCONFIG that
satisfies the criteria stated in section 4.1.

Definition 2 (Solution to a Configuration Task)
A configuration task is a pair

(ConfigKB, Task)

(as specified in sections 4.3 and 4.2, respectively), and a
complete configuration PARCONFIG is a solution to it, if
it is consistent with the ConfigKB and the Task,

PARCONFIG ConfigKB Task ⊭ .

This may seem too weak, because criterion 1 in section 4.1
requires the entailment of the satisfaction of the TaskGoals
in Task.

Proposition 1
If PARCONFIG is a solution to a configuration task (Con-
figKB, Task), then

 PARCONFIG ConfigKB ⊨
 goalTaskGoals goal.Satisfied = T.

This follows from the closure assumption: Since for the
chosen TaskGoals, Satisfied=T is explicitly introduced in
Task, it follows that all Requires constraints related to
them are satisfied, and, hence, they are not only consistent,
but entailed. As for the other criteria of section 4.1:

2. Compliance with specific application require-
ments is guaranteed by consistency with the
TaskParameters under the TaskParameter-
Goal/ComponentConstraints in ConfigKB and
with TaskRestrictions in Task

3. Realizability is established by consistency with
ComponentConstraints

4. The ResourceConstraint is also consistent.

Criteria 5, optimality, will be discussed in the following
section.

5 Generating (Near) Optimal Configura-

tions

5.1 Configuration as Diagnosis

The current version of GECKO is based on the assumption
that there exists a finite set of components, COMPS, as a
repository for all configurations. This means, no new in-
stances of components types are created during configura-
tion and, more specifically, a component will not be dupli-
cated if it is included in the configuration due to several
constraints. In this case, determining ACTCOMPS of a
complete configuration can be seen as an activity assign-
ment

AA: COMPS {active, inactive} ,
indicating the inclusion in or exclusion from the configura-
tion, and the consistency test of Definition 2 becomes
 AA ConfigKB Task ⊭ .
This representation shows the analogy to the consistency-
based formalization of component-oriented diagnosis: an
assignment MA of modes (i.e. nominal or faulty behavior)
to a set of components,
 MA {OK, fault1, fault2, …}
characterizes a diagnosis, if it is consistent with the do-
main knowledge (a library of behavior models and a struc-
tural description), called system description, SD, and a set
of observations, OBS:
 MA SD OBS ⊭ .
In both cases, the assignments to the components

AA MA
are checked for consistency with a fixed set of constraints
representing the domain knowledge

ConfigKB SD ,
and a set of constraints representing a specific problem
instance

Task OBS .
In consistency-based diagnosis, theories and algorithms

have been developed to determine diagnostic solutions,
which can be exploited for the configuration task based on
the analogy outlined above.

5.2 Conflict-directed A*

Based on the above formalization, many implementations
of consistency-based diagnosis exploit a best-first search
for consistent mode assignments, using probabilities of
individual behavior modes as a utility function (and usual-
ly making the assumption that faults occur independently)
as SHERLOCK does([12]). Classical A* search has been
extended and improved by pruning the search space based
on inconsistent partial mode assignments that have been
previously detected during the search (called conflicts),
exploiting a truth-maintenance system (TMS, such as the
assumption-based TMS [13]) as a dependency recording
mechanism that delivers conflicts. From the diagnostic
solutions, this approach has been generalized later as con-
flict-directed A* search, see [6].

Proceedings of the 26th International Workshop on Principles of Diagnosis

94

Procedure CDASTAR

1) Terminate=F
2) Solutions=
3) Conflicts=
4) VA=VAinitial

5) DO WHILE Terminate=F
6) Apply Constraints(VA)
7) Check consistency of VA
8) IF consistent
9) THEN append VA to Solutions
10) Terminate=Solutions.Terminate
11) ELSE
12) Conflicts=APPEND(Conflicts, newConflicts)
13) END IF
14) VA=Conflicts.BestCandidateResolvingConflicts
15) END DO WHILE
16) RETURN Solutions

The effectiveness of the pruning of the search space
based on previously detected inconsistencies (highlighted
in the above pseudo code) grows with the number of (non-
redundant) conflicts that are extracted. Achieving this,
however, can be computationally expensive and may have
to be traded off against the computational cost of the con-
sistency test and/or the optimality of the solution. We will
get back to this issue below.

The straightforward mapping of the configuration prob-
lem to CDA* is obtained by representing configurations as
variable assignments:
 VARS={ Compi.active CompiCOMPS}

DOM(Compi.active)={T, F} .
To illustrate how the algorithm works using a simple

example, assume that goal G1 depends on a component
choice that involves 3 components, Ci, each with a contri-
bution of 1 in this choice, which has a satisfactionThresh-
old (2,3), i.e. it is satisfied if at least two of the compo-
nents are active. Search starts with an empty configuration
(active=F for all components) which leads to an incon-
sistency with the constraints related to the choice. Each
pair of inactive components establishes a (minimal) con-
flict:
 { C1,active=F, C2,active=F },

{ C1,active=F, C3,active=F },
{ C2,active=F, C3,active=F }.

Configurations resolving these conflicts are the ones with
active components

{ C1, C2}, { C1, C2}, or { C2, C3},
and the best one would be checked further. If this is done
against another choice for a goal G2, which is based on
components C3, C4, C5 (again all with contribution 1) and a
threshold (1, 3), then a new conflict
 { C3,active=F, C4,active=F, C5,active=F }
is detected, and the configurations resolving all include
active components are

{ C1, C3}, { C2, C3}, { C1, C2, C4}, or { C1, C2, C5}.

5.3 Diagnosis vs. Configuration

Despite the mentioned basic commonality, there are some
important distinctions at a conceptual level, but with a po-
tentially strong impact on the computational complexity.
Partial vs. complete assignments

In diagnosis, it is possible to check partial mode as-
signments to detect useful conflicts. In configuration, we
have to consider complete variable assignments, which, in
assigning T or F to activity variables of all components,
correspond to complete configurations. The reason is that,
as illustrated by the above trivial example, the constraints
related to a choice deliver important conflicts based on
components being not active. A partial configuration, e.g.
assigning active=T to, say, C1 only, is consistent with the
respective choice; that this configuration does not satisfy
G1 is detected only, if all other components are assumed to
be inactive (Of course, if the satThreshold has an upper
limit, we obtain conflicts involving too large sets of active
components, as well). This observation is related to anoth-
er difference:
(NON-)Locality of the Domain Theory
In diagnosis, the domain theory is as modular as the de-
vice: it consists of constraints that represent the local inter-
action of components and constraints that capture the local
behavior of components under certain modes. Checking
the consistency of a partial mode assignment requires ap-
plying the directly related constraints only. In contrast,
constraints representing configuration knowledge are al-
most by definition non-local: they are meant to relate many
components across the entire configuration, e.g. as choices.
If choices play a major role and are large, this can be a
source of severe problems.

The training plan generation application forms an ex-
treme example: choices may involve in the order of 100
components, because many exercises may be related to a
particular muscle group, while only a handful of them to-
gether satisfy the goal. In addition, exercises are challeng-
ing several muscle groups. If the lower boundary of the
satisfactionThreshold of a choice is k and the size of the
choice is n, then (assuming a contribution 1 for each com-
ponent), the number of resulting minimal conflicts will be

(
𝑛

𝑘 − 1
)

– prohibitively large in the training application. This has
an impact on the algorithm, as discussed in section 5.5.
First, we have to introduce appropriate utility functions to
measure the quality of a configuration.

5.4 Utility Functions

The utility of a configuration should essentially reflect
 the degree of fulfillment of the relevant goals

and
 the amount of resources required.

A measure of the former may also consider priorities of
goals. The same holds for individual components. Since
inactive components neither make contributions nor con-
sume resources, it is plausible to assume that the utility of
a configuration depends on its active components only.

In the following, it is assumed that
 the contribution of a configuration is obtained

solely as a combination of contributions of the
active components included in the configuration
and otherwise independent of the type of proper-
ties of the components,

 we can define a subtraction “-” of contributions,
 the cost of the contribution is given as the sum of

the cost of the involved active components and
will usually be numerical,

Proceedings of the 26th International Workshop on Principles of Diagnosis

95

 we can define a ratio “/” of contributions and re-
sources,

 there is a function that maps priority of goals to a
weight of the contributions and a kind of multi-
plication,
*: DOM(weight)xDOM(contribution)

 DOM(contribution),
is defined.

Then the following specifies a family of utility functions
(where we simplify the notation by writing
Goalj.SatThreshold instead of Choicej.SatThreshold etc.):

For an active Goal Goalj, the TotalContribution of a
Configuration is

Configuration.TotalContribution(Goalj):=
 CompiConfiguration.ACTCOMPS Compi.Contribution(Goalj)

where denotes the Combine operation, the ActualCon-
tribution is given as

Configuration.ActualContribution(Goalj):=
max(Configuration.TotalContribution(Goalj),
 Goalj.Combine(Goalj

SatThreshold,posTolerance)),
and a penalty (for over-satisfaction) as
 Configuration.Penalty(Goalj):=

max (0,
Configuration.TotalContribution(Goalj)

 - Goalj.Combine(Goalj SatThreshold,posTolerance).
Based on this, we define the utility function as
 Configuration.Utility(ACTGOALS):=
 Goalj Configuration.ACTGOALS

weight(Goalj.Priority)
* Configuration.ActualUtility(Goalj)

+ f * Configuration.Penalty(Goalj))
/ CompiConfiguration.ACTCOMPS Compi.Resource.

The factor f determines whether or not excessive contri-
butions are penalized (by the excessive amount); the
weight can emphasize contributions to Goals with high
priority, and the tolerance interval can express how exactly
the intended SatThreshold has to be hit.

5.5 GECKO Algorithm

For the GECKO variant of CDA* we modified CDA* by
activating only the constraints needed at a specific stage,
thereby reducing the number of occurring conflicts signifi-
cantly.
GECKO characterizes a stage in the problem solving pro-
cess and hence the criteria for constraint activation as a
pair

S = (GOALS, configuration),

that is a set of goals that are considered and a configuration
to be checked for consistency. This allows for search strat-
egies that do not consider all active goals from the begin-
ning. Therefore, the constraints to be applied are not only
determined by the variable assignment, but also by the
goals. In our first application, goals are activated in a de-
scending order, according to their priority.

To determine the hitting sets of the conflicts we use dif-
ferent algorithms from [14], depending on the domain. In
BestCandidateResolvingConflicts, the next-best solution is
generated.

Procedure GECKO Configuration Algorithm

1) ApplyConstraints(Constraints(Initial)
2) ActComps=ACTCOMPS0

3) Priority=max(actGoals.Priority)
4) DO WHILE Priority >=1
5) ApplyConstraints(Constraints(

GoalPriorityClass(Priority))
6) VA=VA(ActComps,COMPS\ActComps)
7) NewActComps=

GECKO.CDASTAR(VA).ActComps
8) ActComps = NewActComps.Commit
9) END DO WHILE
10) RETURN ActComps

In line 8, the algorithm fixes the components added to
satisfy the recently considered goals. This means, when
trying to satisfy further goals (with lower priority) they
will not be de-activated. This heuristic aims at satisfying as
many goals as possible with the given resources in the or-
der of their priority, but, obviously, may miss a globally
optimal solution.

6 Case Study: Training Plan Generation

We are working on the realization of the three applications
presented in section 3. To demonstrate the specialization of
GECKO concepts and the capabilities of the GECKO algo-
rithm, we selected the fitness training example. From the
three examples, fitness is best suited to illustrate the ad-
vantages of CDA* in configuration.

6.1 Domain Theory

In fitness, trainees perform exercises, like push-ups or run-
ning, to train body parts under certain aspects (endurance,
muscle gain). To train means to improve physical abilities,
like endurance, and to influence biometric parameters,
such as weight. In configuration terms: exercises contrib-
ute to a set of fitness goals. Hence, we created the domain
theory for training planning using the concepts specified in
section 4.2. Table 1 contains an overview on the most im-
portant specializations.
The result may appear straightforward to outsiders, but it is
actually the result of several months of analyses carried out
jointly with experts from sports sciences, which took as to
several versions and revisions of the model.

Table 1: Specialization of GECKO Concepts

GECKO Concept Fitness Concept Example

Goal TraineeGoal Muscle Gain

TrainingGoal Strength

TargetGoal Biceps

Component Exercise Push-up

Task Trainee -

TaskRestriction TrainingDuration

TaskParameter TrainingProperty Equipment

TraineeProperty Fitnesslevel

Task
A GECKO Task in fitness is a trainee, or more precisely
the request of a training plan by a trainee. A trainee has
expectations regarding the result of the training, represent-
ed by TraineeGoals. The Trainee also has a set of Train-
eeProperties, like Fitnesslevel, and sets the TrainingProp-
erties. Furthermore, a trainee has to specify the desired
TrainingDuration.
 Special among the TraineeProperties are the FitnessTar-
gets and FitnessCategories. A FitnessTarget has to be

Proceedings of the 26th International Workshop on Principles of Diagnosis

96

trained by an Exercise, such as legs. FitnessCategories are
the main abilities of a Trainee, such as strength.

Goals
The domain theory contains three types of goals:

 TraineeGoal: The only TaskGoal in fitness, de-
scribing the expected effect of the fitness training

 TrainingGoal: Abstract goals, specifying the type
of physical ability to be improved e.g. strength

 TargetGoal: Body part the training has to stimu-
late.

To capture the structure of the human body and the
differences in fitness categories, we decompose the
TargetGoals into three levels:

o RegionGoal
o MuscleGroupGoal
o MuscleGoal

Reflecting the FitnessTargets, TargetGoals are struc-
tured in a goal tree. Because FitnessTargets are trained at
different levels, the tree is unbalanced. For example En-
durance is generally trained for the whole body, while
Strength is trained at a muscular level.

Components
All components in fitness are exercises. Each exercise is
related to a FitnessCategory, e.g, pushup is a StrengthEx-
ercise. Exercises can contribute to multiple TargetGoals,
but only TargetGoals of their own FitnessCategory. For
example, a StrengthExercise can only contribute to Tar-
getGoals related to strength.
 Exercises comprise a set of fixed attributes, such as re-
quiredEquipment or requiredFitnesslevel, as well as a set
of unspecified attributes, like TrainingWeight or Dura-
tions. The values of such volatile attributes depend on the
selected TraineeGoal, because they define how an exercise
effects a FitnessTarget – an increase in strength is achieved
by a small number of slow repetitions with very high
weight, while fat is burnt best with many fast repetitions
with little weight.

Utility
The utility of a configuration in SmartFit depends on the
contributions of the active components to required Choices
DOM(compi.contributioni) ={20,40,60,80,100}
The satThreshold of the Choices depends on the priority of
the associated goal
satThreshold = combine(Goali.Priority,normThreshold),
with DOM(Priority) ={1,2,3,4,5}.

For the example in 6.2, we simply multiplied the priori-
ties with the normThreshold =80.
The domain of the combined contribution is from 0 to 500
in steps of 20. In case of contributions larger than 500, the
overshoot is cut, and the value set to 500.

The utility for fitness training is given by the following
equation:

Config.Utility (ACTGOALS):=
 Goalj Config.ACTGOALS
weight (Goalj.Priority) * Config.ActualUtility (Goalj))
/ CompiConfig.ACTCOMPS Compi.Resource.

6.2 Simplified Example

To make the capabilities of GECKO more tangible, we
present a small experiment. For brevity and clarity, we use
a reduced knowledge-base, with three MuscleGoals(table

2), 12 exercises(table 3), and 2 TaskParameters, namely
Equipment and a general Fitnesslevel – thus omitting the
consideration of different Fitnesslevels related to the spe-
cific FitnessTarget, as done in the application system. Fur-
thermore, we set the duration of all exercises to require 5
minutes.

Using this reduced knowledge-base, we applied both the
basic GECKO algorithms and the goal-focused variant.
The results are described in the following subsection.

Table 2: Exemplary muscle goals with priorities

ID MuscleGoal
Priority:

MuscleGain

Priority:

GeneralFitness

G1 Biceps 1 2

G2 Triceps 1 2

G3 Latissimus 2 3

Table 3: Exercises and parameters

ID Exercise Contributions
Required

Equipment

Required

Fitness

level

C1 Biceps

Curl

Biceps: 100 None 1

C2 Dips Triceps: 100 None 1

Latissimus: 20

C3 Lat-Pull Biceps:20 Machines 1

Latissimus:

100

C4 Rev. But-

terfly

Triceps: 40 Machines 1

C5 Pushup Triceps: 80 None 2

C6 Pushup on

knees

Triceps: 60 None 1

C7 Shoulder

press

Triceps: 80 Machines 1

C8 Rowing Biceps: 40 Machines 1

Latissimus: 80

C9 Pull up Biceps: 100 None 2

Latissimus: 80

C10 Triceps

Pulldown

Triceps 100 Machines 2

C11 Pull up

(supported)

Biceps: 20 None 1

Latissimus: 80

C12 Rowing

one-armed

Biceps: 40 Machines 2

Latissimus:

100

To compare the results of different tasks, we conducted to

experiments with different TraineeGoals and TaskParame-

ter values. For the basic algorithm, we used the Tasks

shown in Table 4.

Table 4: Task for experiments A and B

Variable Values A Values B

TaskGoal General Fitness Muscle Gain

TaskParameter:

FitnessLevel

Untrained (1) Trained (2)

TaskParameter:

Equipment

Machines none

TaskRestriction:

TrainingDuration

15 minutes 30 minutes

The results of the configuration with the basic GECKO

algorithm are shown in Tables 5 and 6.

Proceedings of the 26th International Workshop on Principles of Diagnosis

97

Table 5: Configuration results basic GECKO Algorithm

Experiment A Experiment B

Lat-Pull Pull up

Dips

Rowing Pull up (supported)

Pushup on knees

Shoulder press Biceps Curl

Table 6: State of the Goals after running the basic Algorithm

Muscle Goal Value A Value B

Biceps Partially Satis-

fied

Satisfied

Triceps Satisfied Satisfied

Latissimus Satisfied Partially Satis-

fied

Application Evaluation
The results indicate that the GECKO algorithms are capa-
ble of generating optimal solutions to configuration prob-
lems. In experiment B, it can be seen that GECKO was not
able to satisfy G3 completely, since there were not enough
consistent exercises available. Thus, the less important
goals were satisfied, but not the important one. In experi-
ment A on the other hand, the algorithm was able to fully
satisfy G3 but not G1, since the duration resource was only
sufficient for three exercises.

6 Discussion and Outlook

The results shown above indicate that treating configura-
tion as a diagnostic problem, and solving it with tech-
niques from consistency-based diagnosis is a promising
approach to user-oriented configurators for optimal con-
figuration problems.

The analysis of different application domains, including
the ones mentioned in section 3, triggers the insight that
variations of the search algorithm may be required in order
to reflect the specific requirements and structure of the
problems. This is particularly true for applications that
involve a high level of interaction, such as leaving choices
to the user, providing explanations for system decisions,
and allowing him to modify his/her decisions in an in-
formed way. Retracting decisions and also generating ex-
planations can be supported by the ATMS, which also
produces conflicts.

The conceptual and algorithmic solution to configura-
tion generation presented in this paper could certainly be
implemented using other techniques that have been pro-
posed and used for configuration. However, our choice of
an ATMS-based solution (and CDA*) was strongly moti-
vated by the overall objectives stated in section 4.1: we
intend to base explanation facilities (“which user inputs
and domain restriction prevent option x to be viable?”),
preferences and soft constraints, and the possibility to re-
tract input and explore several alternative solutions on ca-
pabilities of the ATMS.

A goal of our work is to extract features from the case
studies that can support a classification of configuration
applications as a basis for selection from a set of prede-
fined algorithm variants and strategies for man-machine
interaction.

Other options, such as compiling (parts of) the con-
straint network and moving search heuristics to a lower

technical level (the constraint system) will also be ex-
plored.

Furthermore, we are currently preparing an application
to configuration of automation systems for collaborative,
flexible manufacturing and modular multi-purpose vehi-
cles. This application of GECKO is likely to require
stronger spatial and also temporal constraints for structur-
ing a configuration.

Acknowledgments

We would like to thank our project partners for providing

their domain knowledge and their assistance, esp. Florian

Kreuzpointner and Florian Eibl. Special thanks to Oskar

Dressler (OCC’M Software) for proving the constraint

system (CS3 or Raz’r). The project was funded by the the

German Federal Ministry of Economics and Technology

under the ZIM program (KF2080209DB3).

References

[1] JP McDermott, “RI: an Expert in the Computer

Systems Domain”, Artificial Intelligence, 1980.

[2] U. Junker, D. Mailharro, “The logic of ILOG(J)

Configurator: Combining Constraint Programming

with a Description Logic”, IJCAI, 2003.

[3] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen,

“Knowledge-based Configuration: From Research to

Business Cases.”

[4] D. Sabin, R. Weigel, “Product configuration

frameworks – a survey.” IEEE Intelligent System,

1998.

[5] J. de. Kleer, BC Williams, “Diagnosing Multiple

Faults,” Artificial Intelligence, 1987

[6] BC William, R.J. Ragno, “Conflict-directed A* and its

role in model-based embedded systems”, Discrete

Applied Mathematics, 2007.

[7] M. Stumptner, G. Friedrich, A. Haselböck,

“Generative constraint-based configuration of large

technical systems“, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing,

1998.

[8] G. Weiß, F. Grigoleit, P. Struss, “Context Modeling

for Dynamic Configuration of Automotive Functions”,

ITSC, 2013

[9] C. Richter, “Development of an interactive car

configuration system”, Master’s Thesis, Tech. Univ.

of. Munich,

[10] A. Verikios, “A tool for the Configuration of CERN

Particle Beam Measurement Systems”, Master’s

Thesis, Tech. Univ. of. Munich,

[11] U. Junker, “Configuration.” Handbook of Constraint

Programming, Configuration, p. 837-868, 2006.

[12] J. De Kleer, BC Williams,”Diagnosis with Behavioral

Model”, IJCAI, 1993.

[13] J De Kleer, “An assumption-based TMS” Artificial

intelligence, 1986.

[14] J De Kleer, “Hitting Set Algorithms for Model-based

Diagnosis”, Principles of Diagnosis, 2011.

Proceedings of the 26th International Workshop on Principles of Diagnosis

98

