
Abstract 

Although many approaches to knowledge-based 
configuration have been developed, the genera-
tion of optimal configurations is still an open is-
sue. This paper describes work that addresses this 
problem in a general way by exploiting an analo-
gy between configuration and diagnosis. Based on 
a problem representation consisting of a set of 
ranked goals and a catalog of components, which 
can contribute in combination to their satisfaction, 
configuration is formulated as a finite constraint-
satisfaction-problem. Configuration is then solved 
by state-search, in which a problem solver selects 
components to be included in an appropriate con-
figuration. A variant of Conflict-Directed A* has 
been implemented to generate optimal configura-
tions. To demonstrate its feasibility, the concept 
was applied, among other domains, to personal-
ized automatic training plan generation for fitness 
studios.  

1 Introduction 

Besides diagnosis, the task of configuration has been one 
of the earliest application areas of work on knowledge-
based systems, initially in the form of rule-based “expert 
systems”, for instance in [1]. Today, systems for automat-
ed configuration have reached maturity for practical appli-
cations, as shown in [2], [3], and [4]. Despite this success, 
developing algorithms for computing optimal or opti-
mized configurations with general applicability still de-
serves more research efforts.  

Driven by a number of different configuration tasks, we 
developed GECKO (Generic constraint-based Konfigura-
tion), a generic solution to the configuration problem that 
can be specialized to different application domains and 
that, among other objectives, aims at supporting the gener-
ation of optimal configurations.  
In a nutshell, the solution exploits an analogy: 

 The configuration task can be seen as searching 
for an assignment of active or non-active to the 
components in a given repository, representing 
whether or not a component is included in the 
configuration, such that it achieves some goals in 
an optimal way 

 Diagnosis has been formalized as a search for an 
assignment of behavior modes (normal or fault_x) 

to a set of system components such that it is op-
timally compliant with a set of observations. 

Based on this analogy, we exploit a search technique that 
has been developed as consistency-based diagnosis, see 
[5]), and as a generalization for optimal constraint satisfac-
tion, called conflict-directed A*, see [6] 

In the following section, we discuss related work on 
configuration systems. In section 3, we present some ex-
amples of configuration problems that we tackled using 
GECKO and that will serve for illustration purposes. Next, 
we introduce our formalization of the configuration task 
and the key concepts of GECKO. In section 5, we discuss 
the analogy between diagnosis and configuration, the ap-
plication of CDA*, variants of utility functions and how 
they relate to different types of configuration applications. 
The results are shown in section 6. Finally, our current 
work and some of the open issues are discussed. 

2  Knowledge-based Configuration 

Applications of configuration are immensely diverse, 
but they all share a number of common problems, such as 
compliance with domain knowledge, size of the solution 
space, and the resulting complexity of the problem solving 
task. It requires knowledge-based approaches to support 
the problem-solving activities, such as product configura-
tion or variability management see [3] and [4]. 

Current research on configuration, especially for large 
applications, tends to neglect global optimization, focusing 
on local optimization, user interaction, or aiming at pro-
ducing “good” solutions, see [3] and [7].  

The focus of this paper is a generic, constraint-based 
configurator (GECKO) for solving optimal configuration 
problems. The core of GECKO is a variant of Brian Wil-
liams’ Conflict-Directed A* (CDA*, [6]). The solution 
works on a generic representation of configuration 
knowledge and tasks. We consider the task of generating 
configurations as similar to consistency-based diagnosis. 
Instead of assigning modes for fault identification as in [5], 
GECKO assigns the activity to components contributing to 
goals. A configuration is consistent if all task-relevant 
goals are satisfied. The quality of a configuration is given 
by the level of goal satisfaction and the amount of resource 
consumption. Our approach allows the arbitrary selection 
of optimization criteria, like minimal resource consump-
tion or maximal goal contribution. In the presented case 
study, our aim was to maximize the number of satisfied 
goals under consideration of available resources.  
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3  Application Examples 

Configuration problems are almost ubiquitous in modern 
life, with applications as different as creating a customized 
computer as done by R1 in [1] and adapting the system 
functions of a car, see [8]. To illustrate the versatility of 
GECKO, we present three applications.  

3.1 Car Configuration 

Today, car manufacturers offer a vast number of models, 

model variants, and equipment options to their customer. 

The resulting complexity does not only prohibit a compre-

hensive exploration of the solution space, but is also likely 

to provide customers with sub-optimal car variants. A do-

main model for car configuration was created and mapped 

to the GECKO concepts, which are presented in 4.2([9]) 

3.2 User Interface Configuration 

The Beam Instrumentation group at CERN is responsible 

for the design and implementation of particle beam meas-

urement systems. These systems are specifically built for 

each case, resulting in extensive work on constructing 

them. While the generation of the GUIs, that is the imple-

mentation, is automated, the configuration is not. This task 

currently requires an expert to select libraries, graphical 

elements, and data sources and to parameterize them. Such 

tasks are typical configuration tasks and thus enable the 

automation of the configuration of the GUIs by GECKO 

([10]).  

3.3 Training Planning in Sport Science 

At a first glance, training planning may appear to be a typ-
ical scheduling task, instead of a configuration problem. 
Taking a closer look shows that it mainly involves activi-
ties we consider the core of configuration: selecting, pa-
rameterizing, and arranging components to satisfy goals, 
whereas assigning time slots to the selected exercises is, in 
general, fairly straightforward  

A trainer has to analyze the biometric state of his train-
ee, such as fitness or age, to consider constraints on the 
created training plan, for example duration or available 
equipment, and to select and order appropriate exercises.  

The sheer number of existing exercises and the size of 
the solution space show that training planning includes 
optimization. In general, a trainer tries to maximize the 
training effect within the available time and under consid-
eration of the trainee’s goal and abilities. The specializa-
tion of GECKO to training planning is described in section 
5.  

4 GECKO - Foundations  

4.1 Intuition 

With GECKO, we aim at developing a generic solution to 
configuration problems, which can be tailored towards a 
particular domain by specializing some basic classes and 
creating a knowledge base in terms of domain-specific 
constraints. Its design is driven by the following objec-
tives: 

 supporting both automatic and interactive con-
figuration; 

 enabling the use of the system without deep do-
main knowledge, esp. about how high-level goals 
of the user break down to more detailed and 
technical ones; 

 handling also soft domain constraints and user 
preferences, and 

 offering support to the user by providing expla-
nations for generated parts of the configuration 
and for unavailable options and by suggesting re-
visions to resolve inconsistencies. 

However, this paper focuses on the basis, a generic 
problem solver for (optimal) configuration. Determining 
the solution – the configuration - means selecting a set of 
instances of given types of elements - components -, per-
haps with certain attribute values and organized in a par-
ticular structure. The configuration has to 

1. satisfy a set of high-level user goals, 
2. be compliant with particular attributes and re-

strictions supplied by the user, 
3. be realizable both in principle (i.e. not violating 

domain-specific restrictions on valid configura-
tions),  

4. under consideration of available resources, and 
5. optimal (or near optimal) according a criterion 

that reflects the degree of fulfilling the goals and 
the amount of resources consumed.  

Configurations can be physical devices, such as tur-
bines, communication systems, and computers, abstract 
ones like a curriculum or a company structure, or a soft-
ware system. In contrast to a design task involving the 
creation of new types of components, configuration as-
sumes that all required Components are instances of com-
ponent types from a repository ([11]). This leads to differ-
ent kinds of reasoning involved: innovative design has to 
verify that its result satisfies the goals by inferring that 
they achieved by the system behavior based on behavior 
models of the components, whereas for a configuration 
task, it is assumed that behavioral implications of aggre-
gated components have been compiled into explicit inter-
dependencies of Goals and Components. As a result, soft-
ware systems for configuration are typically based on 
knowledge encoded as constraints or rules, as in [1] and 
[2], and do not require the exploitation of behavior models.  

4.2 Core Concepts 

The core concepts of GECKO are derived from the de-
scription above, as depicted in Fig. 1: 

 Goals express the achievements expected from a 
specific configuration. They may have an 
associated priority dependent on the task and 
different criteria for goal satisfaction.  

 Components are the building blocks of the Con-
figuration. They may be organized in a type hier-
archy (for example, Lithium battery is a voltage 
source). In addition, there may be Components 
that are aggregations of lower level components. 

 A Task specifies the requirements on a configura-
tion from the user’s perspective. It is split into  
three kinds of restrictions:  

Task  
= TaskGoals  TaskParameters  TaskRestrictions. 
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TaskGoals are a collection of Goals the user is aware of 
and which can be (de)activated or prioritized by the user. 
Each TaskGoaln is stated as a restriction Task-
Goaln.Satisfied=T in the Task description.  

While TaskGoals represent objectives a user requires, 
TaskParameters associate values to properties of the 
Task, hence have the form TaskParameterk=valuekj. For 
instance, in vehicle configuration, the target country may 
have an influence on daytime running lights being manda-
tory. However, these implications are not drawn by the 
user (who only provides the country information), but by 
the domain knowledge represented in the system. 

In contrast, TaskRestrictions refer explicitly to the 
choice of Components and their attributes, e.g. that for the 
user, a convertible is not an option or that the engine 
should be a Diesel engine.  
A specific, and often essential, TaskRestriction can be in-
cluded: 

 A ResourceConstraint limits the cost of the con-
figuration, which may be indeed money (car con-
figuration) or time (in training plan configura-
tion), but also computer memory etc. Components 
have to have an attribute that allows calculating 
the resources needed for the entire configuration 
(often as the sum). 

4.3 Constraints on Configurations 

The configuration knowledge of a particular application 
comprises the domain-specific specialization and instantia-
tion of Goals, Components (possibly including component 
attributes and their domains), and relevant TaskParameters 
and their domains as well as constraints that capture inter-
dependencies among these instances. Dependent on which 
kinds of objects are related, we distinguish between the 
following (illustrated in Fig. 1): 

 
Fig. 1 Task constraints in GECKO 

 
 TaskParameterGoalConstraints express that 

certain TaskParameter values may exclude or re-
quire certain goals 

 GoalConstraints relate goals to each other, in 
particular for  refinement of higher-level (esp. 
TaskGoals) to lower-level ones, such as goals re-
lated to various muscle groups that should be ex-
ercized, although the user is not aware of this 

 GoalComponentConstraints capture essential 
configuration knowledge, namely whether and 
how the available components contribute to the 
achievements of goals 

 ComponentConstraints establish interdependen-
cies among components (and their attributes): a 
component may be dependent on or incompatible 
with the presence of another component in the 
configuration 

 TaskParameterComponentConstraints may in-
clude or exclude certain components based on 
TaskParameter values  

A fundamental constraint type is 
 Requires (x, y) 
which is defined by 
 x.active=T   y.active=T 
and used to express dependencies among goals (e.g. refin-
ing a goal to a set of mandatory sub-goals) and compo-
nents (e.g. cruise control requires automatic transmission) 
and as the fundamental coupling between goals and com-
ponents (to achieve high-speed driving, an engine of a cer-
tain power is needed). Furthermore, in order to express that 
several goals or components provide some partial contribu-
tions that jointly result in the satisfaction of a goal (or es-
tablish the preconditions of a component), we introduce 
the concept of a choice, which can also fill the role of y in 
a Requires-constraint. A choice is given by a relation 
 GoalChoice  Goals  ContributionDom 
or  
 ComponentChoice  Components  ContributionDom, 
where ContributionDom specifies a set of values for quan-
tifying how much a goal or component contributes to the 
satisfaction of the choice and needs a zero element and an 
operator  to add up contributions (e.g. addition of inte-
gers). The idea behind choices is implemented by three 
kinds of constraints. The degree of the satisfaction of a 
(component) choice is given by the combined contribu-
tions of the active components of the choice: 
 Choice.satLevel =  Choice.goal.actContribution 
and  
 Choice.goal.actContribution =  

Choice.goal.contribution   IF goal.active=T 
zero           IF goal.sctive=F  . 

The choice is satisfied, if the satLevel lies in a specified 
range, satThreshold: 
 Choice.active = T    
   Choice.satLevel  Choice.satThreshold  . 

This allows implementing not only a minimum level as 
a precondition for the satisfaction of a choice, but also a 
maximum. Preventing “over-satisfaction” may not be a 
common requirement, but in the fitness domain, one may 
want to restrict the set of exercises that impose a load on a 
particular muscle group.  
Another predefined general type of constraint is  

Excludes (x, y) 
defined by 
 x.active=T   y.active=F 
to express conflicting goals, incompatible components, and 
TaskParameterGoal/ComponentConstraints (e.g. high 
body weight may rule out certain exercises).   

The application-specific configuration knowledge is, 
thus, basically encoded as a set of the constraints explained 
above. This, together with the domain-specific ontology 
(as a specialization of the basic GECKO concepts, includ-
ing choices, and associated attributes) and, perhaps, specif-
ic contribution domains and operators, establishes the con-
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figuration knowledge base, called ConfigKB in the fol-
lowing. 
We make some reasonable fundamental assumptions about 
ConfigKB: 

 Each potential TaskGoal is supported: it is the 
starting node of a connected hyper graph of Re-
quires constraints that includes components, i.e. it 
actually needs a (partial) configuration in order to 
be satisfied (which does not mean it can actually 
be satisfied). 

 Closure assumption: the encoded interdepend-
encies, esp. the Requires constraints, are com-
plete. In other words, if all constraints Requires 
(x, y) associated with x are satisfied by a configu-
ration, then x is satisfied. 

 It is consistent. 

4.4 Definition of the Configuration Task 

The goal is to select an appropriate subset of the available 

components, which we call the active ones, and possibly 

determine or restrict their attributes.  

Definition 1 (Complete Configuration) 
A configuration  

PARCONFIG = (ACTCOMPS, COMPATTR) 

is complete if includes exactly the active components:  

comp  ACTCOMPS  comp.Active = T. 

GECKO has to generate a configuration PARCONFIG that 
satisfies the criteria stated in section 4.1. 

Definition 2 (Solution to a Configuration Task) 
A configuration task is a pair  

(ConfigKB,  Task) 

(as specified in sections 4.3 and 4.2, respectively), and a 
complete configuration PARCONFIG is a solution to it, if 
it is consistent with the ConfigKB and the Task, 

PARCONFIG  ConfigKB  Task ⊭ . 

This may seem too weak, because criterion 1 in section 4.1 
requires the entailment of the satisfaction of the TaskGoals 
in Task.  

Proposition 1 
If PARCONFIG is a solution to a configuration task (Con-
figKB,  Task), then  

 PARCONFIG  ConfigKB ⊨  
 goalTaskGoals goal.Satisfied = T. 

This follows from the closure assumption: Since for the 
chosen TaskGoals, Satisfied=T is explicitly introduced in 
Task, it follows that all Requires constraints related to 
them are satisfied, and, hence, they are not only consistent, 
but entailed. As for the other criteria of section 4.1: 

2. Compliance with specific application require-
ments is guaranteed by consistency with the 
TaskParameters under the TaskParameter-
Goal/ComponentConstraints in ConfigKB and 
with TaskRestrictions in Task 

3. Realizability is established by consistency with 
ComponentConstraints 

4. The ResourceConstraint is also consistent. 

Criteria 5, optimality, will be discussed in the following 
section. 

5 Generating (Near) Optimal Configura-

tions  

5.1 Configuration as Diagnosis 

The current version of GECKO is based on the assumption 
that there exists a finite set of components, COMPS, as a 
repository for all configurations. This means, no new in-
stances of components types are created during configura-
tion and, more specifically, a component will not be dupli-
cated if it is included in the configuration due to several 
constraints. In this case, determining ACTCOMPS of a 
complete configuration can be seen as an activity assign-
ment 

AA: COMPS  {active, inactive} , 
indicating the inclusion in or exclusion from the configura-
tion, and the consistency test of Definition 2 becomes  
 AA  ConfigKB  Task ⊭ . 
This representation shows the analogy to the consistency-
based formalization of component-oriented diagnosis: an 
assignment MA of modes (i.e. nominal or faulty behavior) 
to a set of components,  
 MA  {OK, fault1, fault2, …} 
characterizes a diagnosis, if it is consistent with the do-
main knowledge (a library of behavior models and a struc-
tural description), called system description, SD, and a set 
of observations, OBS: 
 MA  SD  OBS ⊭ . 
In both cases, the assignments to the components 

AA  MA 
are checked for consistency with a fixed set of constraints 
representing the domain knowledge 

ConfigKB  SD ,   
and a set of constraints representing a specific problem 
instance 

Task  OBS .  
In consistency-based diagnosis, theories and algorithms 

have been developed to determine diagnostic solutions, 
which can be exploited for the configuration task based on 
the analogy outlined above. 

5.2 Conflict-directed A* 

Based on the above formalization, many implementations 
of consistency-based diagnosis exploit a best-first search 
for consistent mode assignments, using probabilities of 
individual behavior modes as a utility function (and usual-
ly making the assumption that faults occur independently) 
as SHERLOCK does([12]). Classical A* search has been 
extended and improved by pruning the search space based 
on inconsistent partial mode assignments that have been 
previously detected during the search (called conflicts), 
exploiting a truth-maintenance system (TMS, such as the 
assumption-based TMS [13]) as a dependency recording 
mechanism that delivers conflicts. From the diagnostic 
solutions, this approach has been generalized later as con-
flict-directed A* search, see [6].  
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Procedure CDASTAR  

1) Terminate=F 
2) Solutions= 
3) Conflicts= 
4) VA=VAinitial 

5) DO WHILE Terminate=F 
6)   Apply Constraints(VA) 
7)   Check consistency of VA 
8)   IF consistent 
9)    THEN append VA to Solutions 
10)     Terminate=Solutions.Terminate 
11)  ELSE  
12)  Conflicts=APPEND(Conflicts, newConflicts) 
13)  END IF 
14)  VA=Conflicts.BestCandidateResolvingConflicts 
15) END DO WHILE 
16) RETURN Solutions 

The effectiveness of the pruning of the search space 
based on previously detected inconsistencies (highlighted 
in the above pseudo code) grows with the number of (non-
redundant) conflicts that are extracted. Achieving this, 
however, can be computationally expensive and may have 
to be traded off against the computational cost of the con-
sistency test and/or the optimality of the solution. We will 
get back to this issue below. 

The straightforward mapping of the configuration prob-
lem to CDA* is obtained by representing configurations as 
variable assignments: 
 VARS={ Compi.active   CompiCOMPS} 

DOM(Compi.active)={T, F} . 
To illustrate how the algorithm works using a simple 

example, assume that goal G1 depends on a component 
choice that involves 3 components, Ci, each with a contri-
bution of 1 in this choice, which has a satisfactionThresh-
old (2,3), i.e. it is satisfied if at least two of the  compo-
nents are active. Search starts with an empty configuration 
(active=F for all components) which leads to an incon-
sistency with the constraints related to the choice. Each 
pair of inactive components establishes a (minimal) con-
flict: 
 { C1,active=F, C2,active=F },  

{ C1,active=F, C3,active=F }, 
{ C2,active=F, C3,active=F }.  

Configurations resolving these conflicts are the ones with 
active components  

{ C1, C2}, { C1, C2}, or { C2, C3},  
and the best one would be checked further. If this is done 
against another choice for a goal G2, which is based on 
components C3, C4, C5 (again all with contribution 1) and a 
threshold (1, 3), then a new conflict 
 { C3,active=F, C4,active=F, C5,active=F } 
is detected, and the configurations resolving all include 
active components are 

{ C1, C3}, { C2, C3}, { C1, C2, C4}, or { C1, C2, C5}.  

5.3 Diagnosis vs. Configuration 

Despite the mentioned basic commonality, there are some 
important distinctions at a conceptual level, but with a po-
tentially strong impact on the computational complexity. 
Partial vs. complete assignments 

In diagnosis, it is possible to check partial mode as-
signments to detect useful conflicts. In configuration, we 
have to consider complete variable assignments, which, in 
assigning T or F to activity variables of all components, 
correspond to complete configurations.  The reason is that, 
as illustrated by the above trivial example, the constraints 
related to a choice deliver important conflicts based on 
components being not active. A partial configuration, e.g. 
assigning active=T to, say, C1 only, is consistent with the 
respective choice; that this configuration does not satisfy 
G1 is detected only, if all other components are assumed to 
be inactive (Of course, if the satThreshold has an upper 
limit, we obtain conflicts involving too large sets of active 
components, as well). This observation is related to anoth-
er difference: 
(NON-)Locality of the Domain Theory 
In diagnosis, the domain theory is as modular as the de-
vice: it consists of constraints that represent the local inter-
action of components and constraints that capture the local 
behavior of components under certain modes. Checking 
the consistency of a partial mode assignment requires ap-
plying the directly related constraints only. In contrast, 
constraints representing configuration knowledge are al-
most by definition non-local: they are meant to relate many 
components across the entire configuration, e.g. as choices. 
If choices play a major role and are large, this can be a 
source of severe problems.  

The training plan generation application forms an ex-
treme example: choices may involve in the order of 100 
components, because many exercises may be related to a 
particular muscle group, while only a handful of them to-
gether satisfy the goal. In addition, exercises are challeng-
ing several muscle groups. If the lower boundary of the 
satisfactionThreshold of a choice is k and the size of the 
choice is n, then (assuming a contribution 1 for each com-
ponent), the number of resulting minimal conflicts will be 

(
𝑛

𝑘 − 1
) 

– prohibitively large in the training application. This has 
an impact on the algorithm, as discussed in section 5.5. 
First, we have to introduce appropriate utility functions to 
measure the quality of a configuration. 

5.4 Utility Functions 

The utility of a configuration should essentially reflect 
 the degree of fulfillment of the relevant goals 

and  
 the amount of resources required.  

A measure of the former may also consider priorities of 
goals. The same holds for individual components. Since 
inactive components neither make contributions nor con-
sume resources, it is plausible to assume that the utility of 
a configuration depends on its active components only. 

In the following, it is assumed that  
 the contribution of a configuration is obtained 

solely as a combination of contributions of the 
active components included in the configuration 
and otherwise independent of the type of proper-
ties of the components, 

 we can define a subtraction “-” of contributions, 
 the cost of the contribution is given as the sum of 

the cost of the involved active components and 
will usually be numerical, 
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 we can define a ratio “/” of contributions and re-
sources, 

 there is a function that maps priority of goals to a 
weight of the contributions and a kind of  multi-
plication,  
*: DOM(weight)xDOM(contribution) 

 DOM(contribution),  
is defined. 

Then the following specifies a family of utility functions 
(where we simplify the notation by writing 
Goalj.SatThreshold instead of  Choicej.SatThreshold etc.): 

For an active Goal Goalj, the TotalContribution of a 
Configuration is 

Configuration.TotalContribution(Goalj):=  
 CompiConfiguration.ACTCOMPS  Compi.Contribution(Goalj) 

where   denotes the Combine operation, the ActualCon-
tribution is given as  

Configuration.ActualContribution(Goalj):= 
max(Configuration.TotalContribution(Goalj), 
          Goalj.Combine(Goalj 

SatThreshold,posTolerance)), 
and a penalty (for over-satisfaction) as  
 Configuration.Penalty(Goalj):= 

max (0, 
Configuration.TotalContribution(Goalj) 

 - Goalj.Combine(Goalj SatThreshold,posTolerance).  
Based on this, we define the utility function as  
 Configuration.Utility(ACTGOALS):= 
  Goalj Configuration.ACTGOALS   

weight(Goalj.Priority)  
* Configuration.ActualUtility(Goalj)  

+ f * Configuration.Penalty(Goalj) )  
/  CompiConfiguration.ACTCOMPS  Compi.Resource. 

The factor f determines whether or not excessive contri-
butions are penalized (by the excessive amount); the 
weight can emphasize contributions to Goals with high 
priority, and the tolerance interval can express how exactly 
the intended SatThreshold has to be hit. 

5.5 GECKO Algorithm 

For the GECKO variant of CDA* we modified CDA* by 
activating only the constraints needed at a specific stage, 
thereby reducing the number of occurring conflicts signifi-
cantly.  
GECKO characterizes a stage in the problem solving pro-
cess and hence the criteria for constraint activation as a 
pair 

S = (GOALS, configuration), 

that is a set of goals that are considered and a configuration 
to be checked for consistency. This allows for search strat-
egies that do not consider all active goals from the begin-
ning. Therefore, the constraints to be applied are not only 
determined by the variable assignment, but also by the 
goals. In our first application, goals are activated in a de-
scending order, according to their priority.  

To determine the hitting sets of the conflicts we use dif-
ferent algorithms from [14], depending on the domain. In 
BestCandidateResolvingConflicts, the next-best solution is 
generated.  

Procedure GECKO Configuration Algorithm  

1)  ApplyConstraints(Constraints(Initial) 
2)  ActComps=ACTCOMPS0 

3)  Priority=max(actGoals.Priority) 
4)  DO WHILE Priority >=1 
5)   ApplyConstraints(Constraints( 

GoalPriorityClass(Priority)) 
6)   VA=VA(ActComps,COMPS\ActComps) 
7)   NewActComps= 

GECKO.CDASTAR(VA).ActComps 
8)   ActComps = NewActComps.Commit 
9)  END DO WHILE 
10)  RETURN ActComps 

In line 8, the algorithm fixes the components added to 
satisfy the recently considered goals. This means, when 
trying to satisfy further goals (with lower priority) they 
will not be de-activated. This heuristic aims at satisfying as 
many goals as possible with the given resources in the or-
der of their priority, but, obviously, may miss a globally 
optimal  solution. 

6 Case Study: Training Plan Generation 

We are working on the realization of the three applications 
presented in section 3. To demonstrate the specialization of 
GECKO concepts and the capabilities of the GECKO algo-
rithm, we selected the fitness training example. From the 
three examples, fitness is best suited to illustrate the ad-
vantages of CDA* in configuration.  

6.1 Domain Theory 

In fitness, trainees perform exercises, like push-ups or run-
ning, to train body parts under certain aspects (endurance, 
muscle gain). To train means to improve physical abilities, 
like endurance, and to influence biometric parameters, 
such as weight. In configuration terms: exercises contrib-
ute to a set of fitness goals. Hence, we created the domain 
theory for training planning using the concepts specified in 
section 4.2. Table 1 contains an overview on the most im-
portant specializations.  
The result may appear straightforward to outsiders, but it is 
actually the result of several months of analyses carried out 
jointly with experts from sports sciences, which took as to 
several versions and revisions of the model. 

Table 1: Specialization of GECKO Concepts 

GECKO Concept Fitness Concept Example 

Goal TraineeGoal Muscle Gain 

TrainingGoal Strength 

TargetGoal Biceps 

Component Exercise Push-up 

Task Trainee - 

TaskRestriction  TrainingDuration 

TaskParameter TrainingProperty Equipment 

TraineeProperty Fitnesslevel 

Task 
A GECKO Task in fitness is a trainee, or more precisely 
the request of a training plan by a trainee. A trainee has 
expectations regarding the result of the training, represent-
ed by TraineeGoals. The Trainee also has a set of Train-
eeProperties, like Fitnesslevel, and sets the TrainingProp-
erties. Furthermore, a trainee has to specify the desired 
TrainingDuration.   
 Special among the TraineeProperties are the FitnessTar-
gets and FitnessCategories. A FitnessTarget has to be 
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trained by an Exercise, such as legs. FitnessCategories are 
the main abilities of a Trainee, such as strength.  

Goals 
The domain theory contains three types of goals: 

 TraineeGoal: The only TaskGoal in fitness, de-
scribing the expected effect of the fitness training 

 TrainingGoal: Abstract goals, specifying the type 
of physical ability to be improved e.g. strength  

 TargetGoal: Body part the training has to stimu-
late.  

To capture the structure of the human body and the 
differences in fitness categories, we decompose the 
TargetGoals into three levels: 

o RegionGoal 
o MuscleGroupGoal 
o MuscleGoal 

Reflecting the FitnessTargets, TargetGoals are struc-
tured in a goal tree. Because FitnessTargets are trained at 
different levels, the tree is unbalanced. For example En-
durance is generally trained for the whole body, while 
Strength is trained at a muscular level. 

Components 
All components in fitness are exercises. Each exercise is 
related to a FitnessCategory, e.g, pushup is a StrengthEx-
ercise. Exercises can contribute to multiple TargetGoals, 
but only TargetGoals of their own FitnessCategory. For 
example, a StrengthExercise can only contribute to Tar-
getGoals related to strength.  
 Exercises comprise a set of fixed attributes, such as re-
quiredEquipment or requiredFitnesslevel, as well as a set 
of unspecified attributes, like TrainingWeight or Dura-
tions. The values of such volatile attributes depend on the 
selected TraineeGoal, because they define how an exercise 
effects a FitnessTarget – an increase in strength is achieved 
by a small number of slow repetitions with very high 
weight, while fat is burnt best with many fast repetitions 
with little weight.  

Utility  
The utility of a configuration in SmartFit depends on the 
contributions of the active components to required Choices 
DOM(compi.contributioni) ={20,40,60,80,100} 
The satThreshold of the Choices depends on the priority of 
the associated goal  
satThreshold = combine(Goali.Priority,normThreshold),  
with DOM(Priority) ={1,2,3,4,5}. 

For the example in 6.2, we simply multiplied the priori-
ties with the normThreshold =80.  
The domain of the combined contribution is from 0 to 500 
in steps of 20. In case of contributions larger than 500, the 
overshoot is cut, and the value set to 500.  

The utility for fitness training is given by the following 
equation: 

Config.Utility (ACTGOALS):= 
 Goalj Config.ACTGOALS  
weight (Goalj.Priority) * Config.ActualUtility (Goalj))  
/  CompiConfig.ACTCOMPS Compi.Resource. 

6.2 Simplified Example 

To make the capabilities of GECKO more tangible, we 
present a small experiment. For brevity and clarity, we use 
a reduced knowledge-base, with three MuscleGoals( table 

2), 12 exercises( table 3), and 2 TaskParameters, namely 
Equipment and a general Fitnesslevel – thus omitting the 
consideration of different Fitnesslevels related to the spe-
cific FitnessTarget, as done in the application system. Fur-
thermore, we set the duration of all exercises to require 5 
minutes. 

Using this reduced knowledge-base, we applied both the 
basic GECKO algorithms and the goal-focused variant. 
The results are described in the following subsection. 

Table 2: Exemplary muscle goals with priorities 

ID MuscleGoal 
Priority: 

MuscleGain 

Priority:   

GeneralFitness 

G1 Biceps 1 2 

G2 Triceps 1 2 

G3 Latissimus 2 3 

Table 3: Exercises and parameters 

ID Exercise Contributions 
Required 

Equipment 

Required 

Fitness 

level 

C1 Biceps 

Curl 

Biceps: 100 None 1 

C2 Dips Triceps: 100 None 1 

Latissimus: 20 

C3 Lat-Pull Biceps:20 Machines 1 

Latissimus: 

100 

C4 Rev. But-

terfly 

Triceps: 40 Machines 1 

C5 Pushup Triceps: 80 None 2 

C6 Pushup on 

knees 

Triceps: 60 None 1 

C7 Shoulder 

press 

Triceps: 80 Machines 1 

C8 Rowing Biceps: 40 Machines 1 

Latissimus: 80 

C9 Pull up  Biceps: 100 None 2 

Latissimus: 80 

C10 Triceps 

Pulldown 

Triceps 100 Machines 2 

C11 Pull up 

(supported) 

Biceps: 20 None 1 

Latissimus: 80 

C12 Rowing 

one-armed 

Biceps: 40 Machines 2 

Latissimus: 

100 

To compare the results of different tasks, we conducted to 

experiments with different TraineeGoals and TaskParame-

ter values. For the basic algorithm, we used the Tasks 

shown in Table 4. 

Table 4: Task for experiments A and B 

Variable Values A Values B 

TaskGoal General Fitness Muscle Gain 

TaskParameter: 

FitnessLevel 

Untrained (1) Trained (2) 

TaskParameter: 

Equipment 

Machines none 

TaskRestriction: 

TrainingDuration 

15 minutes 30 minutes 

The results of the configuration with the basic GECKO 

algorithm are shown in Tables 5 and 6. 
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Table 5: Configuration results basic GECKO Algorithm 

Experiment A Experiment B 

Lat-Pull Pull up 

Dips 

Rowing Pull up (supported) 

Pushup on knees 

Shoulder press Biceps Curl 

Table 6: State of the Goals after running the basic Algorithm 

Muscle Goal Value A Value B 

Biceps Partially Satis-

fied 

Satisfied 

Triceps Satisfied Satisfied 

Latissimus Satisfied Partially Satis-

fied 

Application Evaluation 
The results indicate that the GECKO algorithms are capa-
ble of generating optimal solutions to configuration prob-
lems. In experiment B, it can be seen that GECKO was not 
able to satisfy G3 completely, since there were not enough 
consistent exercises available. Thus, the less important 
goals were satisfied, but not the important one. In experi-
ment A on the other hand, the algorithm was able to fully 
satisfy G3 but not G1, since the duration resource was only 
sufficient for three exercises.  

6 Discussion and Outlook 

The results shown above indicate that treating configura-
tion as a diagnostic problem, and solving it with tech-
niques from consistency-based diagnosis is a promising 
approach to user-oriented configurators for optimal con-
figuration problems.  

The analysis of different application domains, including 
the ones mentioned in section 3, triggers the insight that 
variations of the search algorithm may be required in order 
to reflect the specific requirements and structure of the 
problems. This is particularly true for applications that 
involve a high level of interaction, such as leaving choices 
to the user, providing explanations for system decisions, 
and allowing him to modify his/her decisions in an in-
formed way. Retracting decisions and also generating ex-
planations can be supported by the ATMS, which also 
produces conflicts. 

The conceptual and algorithmic solution to configura-
tion generation presented in this paper could certainly be 
implemented using other techniques that have been pro-
posed and used for configuration. However, our choice of 
an ATMS-based solution (and CDA*) was strongly moti-
vated by the overall objectives stated in section 4.1: we 
intend to base explanation facilities (“which user inputs 
and domain restriction prevent option x to be viable?”), 
preferences and soft constraints, and the possibility to re-
tract input and explore several alternative solutions on ca-
pabilities of the ATMS.   

A goal of our work is to extract features from the case 
studies that can support a classification of configuration 
applications as a basis for selection from a set of prede-
fined algorithm variants and strategies for man-machine 
interaction. 

Other options, such as compiling (parts of) the con-
straint network and moving search heuristics to a lower 

technical level (the constraint system) will also be ex-
plored.  

Furthermore, we are currently preparing an application 
to configuration of automation systems for collaborative, 
flexible manufacturing and modular multi-purpose vehi-
cles. This application of GECKO is likely to require 
stronger spatial and also temporal constraints for structur-
ing a configuration.  
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