
Simulation of Agent-oriented Internet of Things

Systems

Giancarlo Fortino, Wilma Russo, and Claudio Savaglio

DIMES - Department of Informatics, Modeling, Electronics and Systems

University of Calabria

Via P. Bucci, cubo 41C, 87036 Rende (CS), Italy

{g.fortino, w.russo}@unical.it, csavaglio@dimes.unical.it

Abstract—The proliferation of everyday smart devices able to

sense, process, communicate and/or actuate, is changing the way

we interact with the world around us. These novel cyber-physical

smart devices, or simply Smart Objects (SOs), are the

fundamental building blocks of the Internet of Things (IoT), a

global and highly dynamic ecosystem in which heterogeneous

typologies of device networks seamlessly interoperate. Although

the IoT component technologies and enabling computing

paradigms are not totally new, the development and analysis of

an IoT system is still a complex process. In this paper the

ACOSO (Agent-based COoperative Smart Object) middleware

and the Omnet++ platform have been used as means for the SO-

based IoT systems development/management and simulation.

Indeed, on one hand ACOSO provides effective instruments and

a simple programming model to realize both cyber-physical SOs

and IoT systems. On the other hand, leveraging on the

parallelism between SOs/agents and the Omnet++ network

nodes, simulations of agent-oriented IoT systems in different

scale scenarios have been defined and conducted.

Keywords—Internet of Things; Smart Objects; ACOSO; Agent-

based computing; Network simulation.

I. INTRODUCTION

The Internet of Things (IoT) is being widely considered as
the next revolution towards the digitalization of our society and
economy, overturning the current production of goods and
services. Only in the European Union, the IoT market value is
expected to exceed one trillion euros in 2020, when it is
foreseen that almost 26 billion of IoT devices will daily impact
our life [1]. People, things and places will participate in the
Internet, being globally identified, interconnected, discovered
and queried. Everything will automatically but seamlessly
interact, even without a steady human orchestration, thus
providing novel cyber-physical services to both humans and
machines. Although the IoT vision (of an horizontal and
interconnected landscape) is unique and well-established, over
the years three perspectives raised [2] that respectively
emphasized the importance of the IoT devices, communication
networking and semantic technologies. Although it is widely
recognized that a variety of technologies and research areas
contributes to the IoT, the “Things oriented” perspective is
gaining more and more attention. As matter of fact, such
“things” or smart objects (SOs) have been defined as
fundamental IoT blocks [3] since they concretely and daily
realize the bridging between the real and the virtual world.

SOs, beside their specific purpose (e.g. refrigerating foods in
the case of a smart fridge), are indeed able to sense the
surrounding physical environment, elaborate the perceived
data, share them (with human users or with other SOs) through
adequate communication interfaces and, if necessary, to take
tangible actions. The physical proximity or the similitude of
purposes among multiple SOs enable the constitution of IoT
systems, in which functional, technological and application-
specific heterogeneities should not prevent SOs to interoperate
with each other. In order to cope with all such issues, the IoT
has drawn several concepts from multiple paradigms (e.g.
cloud computing, web-services, etc.), including from the
Agent-Based Computing (ABC) paradigm [4]. In the past
years, research and industrial experiences in a wide range of
application domains (e.g. logistics, economics, social science,
automation science) have already proved the advantages
deriving from the use of the ABC in developing complex
distributed systems under the form of MASs [5]. In the case of
IoT, that can be itself considered as a loosely coupled,
decentralized system of cooperating SOs, the ABC is even
more suitable to support the development of the single SO (“in
the small”) and of the overall IoT system (“in the large”).
However, the IoT systems development process based on ABC
is still in its infancy. Within such development process, the
simulation activity plays a crucial role: indeed, it allows the
understanding of system/network performance and dynamics
before the actual SO-based system implementation and
deployment. In such case too, however, further efforts need to
be made.

In this paper we propose the simulation of agent-oriented
IoT systems in small-medium-large scale scenarios through the
Omnet++ simulation platform [6], with a specific attention to
the inter-SO communications phase. By following such
approach, low-level aspects (wireless coverage issues, physical
environment and obstacles modeling, protocols implementation
details, etc.) are managed by Omnet++ while the ACOSO
middleware [7, 8] provides an effective agent-oriented SO
programming and design model. Indeed, ACOSO is
specifically conceived for the SO development, management
and deployment in any application context which requires
proactivity and reactivity with respect to the surrounding
environment and to other SOs. The rest of the paper is
organized as follows. In Section II, the background of the SO-
based IoT is provided, together with a brief related work on the
available agent-oriented IoT contributions. In Section III, the

This work has been partially carried out under the framework of INTER-
IoT, Research and Innovation action - Horizon 2020 European Project, Grant

Agreement #687283, financed by the European Union.

8

ACOSO middleware is briefly summarized, focusing on its
multi-layered and agent-oriented architecture. Simulations of
agent-oriented IoT systems characterized by different scales
and configurations are reported in Section IV. Conclusion and
future work are finally delineated.

II. BACKGROUND AND RELATED WORK

A. Smart Object-based IoT

The advancements on integrated circuitry, microelectro-
mechanical systems (MEMS), embedded technologies, and
wireless communications enabled the evolution of conventional
everyday things in enhanced entities commonly defined Smart
Objects (SOs) [3]. Differently from passive RFiD systems and
conventional Wireless Sensor Networks (WSNs), an SO is able
to provide identification, sensing/actuation but also to
understand and react to its environment [9], performing object-
to-object communications, ad-hoc networking and complex
goal-oriented decision-making. SOs with limited computational
resources (e.g. RAM, CPU) may be usefully supported by the
Cloud computing [10], which enables devices virtualization
and dynamic data processing (e.g. data integration/fusion).
More powerful SOs, instead, may be designed by following the
principles of autonomic computing and of the cognitive
networks, in order to become even more autonomous,
proactive, context-aware and intelligent [11]. In both cases,
SOs are suitable to replace the human operators in handling the
seamless data flow between different networks typologies, like
BAN (Body Area Networks), LAN (Local Area Networks, e.g.
Smart Home), MAN (Metropolitan Area Networks, e.g. Smart
Hospital) and WAN (Wide Area Networks, e.g. Smart City).
On the other hand, a steady human orchestration of such a huge
amount of devices and device-generated data is not feasible in
the IoT context. The synergic cooperation of multiple SOs may
in fact generate complex and outstanding cyber-physical
services for both humans and machines, but only if the SOs are
adequately designed and implemented. In fact, the SOs are
usually functional and technological heterogeneous with each
other, following different communication protocols and data
formats standards on the basis of their application domains.
Such issues are currently leading to the spread of several IoT
silos that are unable to interoperate [12], preventing the fruition
of the benefits of a fully-realized global IoT. So, proper
development methodologies, modeling paradigms, software
abstractions and interaction patterns need to be adopted by
design [13] in order to overcome SOs heterogeneities and to
make SOs completely interoperable.

B. Agent-oriented IoT

The IoT ecosystem development process includes multiple
requirements, both at system (e.g. scalability, robustness,
standards compliance, discovery) and at thing level (e.g.
interoperability, virtualization, embedded intelligence). The
ABC offers the necessary solutions to satisfactorily address
such requirements by running agents in IoT nodes and hence
by treating the IoT ecosystem as a MAS. The idea of tightly
coupling each SO with (at least) one agent [14] has multiple
benefits since the agent(s) allows mitigating the SO host
hardware/software deficiencies or limitations. In fact, agents
are able to encapsulate complex functionalities abstracting
them from the underlying implementation details,

communicate over different access technologies
simultaneously, interact with pro-activeness, autonomy and
sociability. Consequently, agents running in different
cooperating SOs constitute a decentralized MAS, maximizing
interoperability among heterogeneous sub-systems and
distributed resources, facilitating the system modeling and
development, increasing scalability and robustness but, at the
same time, reducing the design time as well as the time-to-
market. These motivations have driven the design of several
agent-based IoT architectures [11, 15-21] that exploit the
twofold ABC role of:

(i) Modeling paradigm, because most of the SO main
features may be described through agent-related concepts. For
example, SO functionalities may be expressed in terms of
goals, SO working plan in terms of behaviors, SO
augmentation devices (e.g. sensors and actuators) in terms of
dynamically bindable agent resources, etc. In this direction,
[15] and [16] propose coarse-grained agent-oriented SO
models, characterized by a high-degree of abstraction to
support the preliminary development phase of SO analysis.

(ii) Programming paradigm, by exploiting the agent as a
virtual networked alias of the real object [17, 21]. The
virtualization process allows the integration of the SOs in the
cloud or in the SOA/REST world [19], enabling even
constrained SOs to provide complex cyber-physical services. In
such directions, the virtualization allows also the federation of
semantically interoperable SOs, enabling the mashup of their
offered services in accordance with both the application and
user requirements [18].

A particular component that plays a crucial role within
most of the distributed architectures is the middleware. In the
context of the IoT systems, different agent-based middleware
have been developed so far [9, 20] since the ABC provides
powerful mechanisms to realize efficient coordination
structures, SO discovery, resources handling and knowledge
management. As matter of fact, the exploitation of well-
established agent communication standards and interfaces (e.g.
IEEE FIPA [22]) contributes in hiding the SO heterogeneities
both at physical and at communication layers. Moreover the
ABC allows the development of both semi/centralized
(following the IEEE FIPA model that foresees the Directory
Facilitator for mapping agents and their services) and
distributed (by following a P2P approach) service discovery.
Such features have particular importance since the IoT is a
dynamic scenario in which SOs seamlessly appear, disappear,
as well as extemporary interact with each other. The
application of the ABC at middleware layer is also suitable to
integrate agents with semantic technologies (e.g. ontology),
facilitating the data and the context management as well as the
implementation of security mechanisms. Doing so, agents
provide intelligence, context-awareness, robustness and
flexibility to single SOs as well as to the whole IoT system.

III. ACOSO (AGENT-BASED COOPERATING SMART OBJECT)

ACOSO (Agent-based COoperating Smart Objects) [7, 8]
is a middleware providing a (in-the-small and in-the-large) SO
programming model through an agent-based approach.
ACOSO presents an event-driven and multi-layered
architecture that allows the SOs to react to external stimulus,

9

fulfill specific goals, execute inference rules, and use
local/remote knowledge bases. Following a bottom-up
approach, the ACOSO platform presents the following layers:

i. WSAN management layer, which programs and
manages the network of sensors and/or actuators
embedded in a SO. Such layer allows the management
of WSANs (Wireless Sensor and Actuator Networks)
through the BMF (Building Management Framework)
[23] and of body sensor networks through the SPINE
(Signal In-Node Processing Environment) [24].

ii. Agent-based middleware layer, relying on the JADE
platform, that provides an effective agent-oriented
management/communication infrastructure. In
particular, JADE-based SOs are managed by the AMS
(Agent Management System), communicate through the
ACL-based message transport system and use an
extended version of the DF (Directory Facilitator) to
look up SOs and other agents. JADE provides also a
coordination model implementing both the message
passing (MessagingService) and the publish/subscribe
(TopicManagementService) communication paradigms
through a ServiceManager. The original JADE DF,
indeed, has been purposely modified/extended in
ACOSO to support a more situated and dynamic SO
registration, indexing and discovery on the basis of its
specific functional (e.g. provided services) and/or non-
functional (e.g. location, dimension, identity) features.
Since the JADE platform may run both on Java-enabled
and Android devices (by means of LEAP, a JADE
extension), this layer can concretely implement the
high-level SO layer atop PC, smartphones, tablets, etc.

iii. High-level SO layer, which comprises a set of
subsystems describing the SO internal architecture. In
detail, each SO goal is encapsulated in state-based tasks,
which are driven by events and managed by the Task
Management Subsystem. The Communication
Management Subsystem provides a common interface
for SOs communications: the Communication Manager
Message Handler translates incoming messages into
internal events that are managed by the
EventDispatcher. The Device Management Subsystem
manages the SO sensor/actuator devices by means of
specific DeviceAdapters. The KB Management
Subsystem manages the object knowledge base. In such
subsystems an important role is played by the adapters
that represent pluggable software components allowing
SOs to interoperate with external entities or systems.
For example, within the Device Management
Subsystem, two DeviceAdapters are currently defined
to interact with the WSAN management layer: the
BMFAdapter, which allows managing WSANs through
the BMF [25], and the SPINEAdapter, which allows
managing BSNs through SPINE [26]–[28]. Within the
Communication Management Subsystem, instead, the
TCPAdapter and UDPAdapter manage SO
communication with external networked entities based
on TCP and UDP, respectively. The aforementioned
agent-oriented subsystems that compose the High-level
SO layer are platform neutral but, at the Agent-based
middleware layer, the Tasks, the EventDispatcher and
the Communication Manager Message Handler have
been implemented as JADE Behaviors (so their
execution is based on the mechanisms provided by the
basic JADE behavioral execution model), while the SO
messages are defined as ACL messages.

Fig. 1. The ACOSO three-layered architecture

10

IV. SIMULATIONS

The simulation of IoT systems allows the validation of
models, protocols and algorithms before the actual SO
deployment phase. Due to such reasons, it is an important but,
at the same time, challenging task. In IoT systems of different
scales the number of the SOs may vary (from body sensor
networks with less than dozens of SOs, to Smart City with
much more than thousands of devices), with a different degree
of density, as well as the SO services require different
communication paradigms. Just the SO interactions and the
consequent service provision/fruition may be influenced by
factors unrelated to the applications but specifically associated
to the networking (e.g. traffic congestion, wireless signal
attenuation and coverage, etc.). In this paper, we focused on the
communication among SOs (previously modeled with the
ACOSO approach) by simulating IoT networks through
Omnet++[6]. As matter of facts, the parallelism between
SOs/agents and Omnet++ network nodes is straightforward. In
fact, each network node can be considered as an autonomous
SO/agent whose behaviors and tasks can be implemented at the
application layer. All the other tasks related to transport-
network-link protocol implementations, wireless connectivity
issues, physical environment modeling can be instead carried
out by Omnet++. In the following, the results of IoT systems
simulations are shown, with a particular attention to the inter-
SO communication. These simulations aim at investigating
possible issues or unpredicted situations, and at validating IoT
systems design choices and parameters. Application-neutral
scenarios and SOs exchanging empty messages without any
additional application logic have been considered, thus
providing more generality to the obtainable simulation results.

A. Communication settings

Simulations have inspected IoT networks in the SO Discovery
phase (SOD) and in the Information Exchange phase (IE) by
exploiting in both cases reliable (TCP) and unreliable (UDP)
transport protocols. Metrics, parameters and patterns that have
been tested in the simulations are listed as follows:

 Metrics: in the SOD phase the discovery time (DT)
and the request delivery ratio (RDR) have been
measured; in the IE phase the round trip time (RTT)
and the message delivery ratio (MDR).

 Parameters: in the SOD phase all the nodes, with a
different request generation rate (RGR), contact a
specific one that holds the registry of the current
active SOs and of their provided services. In the IE
phase the round trip time (RTT) and the message
delivery ratio (MDR) have been measured when
nodes adopt different message generation rates
(MGR). Both in SOD and in IE phases, different
request/data generation models (RGM and DGM,
respectively) are used: a Deterministic one (1 pk/s and
10 pk/s) and a stochastic Normal one (with 0.5 mean
and 0.2 variance).

 Patterns: in the SOD phase SOs communicate
according to the Client/Server (C/S) paradigm; in the
IE phase, SOs exchange simple messages by

following either a C/S or a Peer-to-Peer (P2P)
paradigm.

B. Simulation Scenarios

Performance metrics presented in Section IV-A have been
evaluated in the context of small-, medium-, large-scale IoT
networks with different SOs density. In particular, since
network congestion may increase depending of the SOs
population, the performance metrics have been analyzed when
the number of the SOs (#SOs) increases. Small-scale networks
have been considered limited to 100 nodes, medium-scale
networks to 500 nodes and large-scale networks to 1000.
Moreover, it has been analyzed how the SO distribution in a
different number of subnetworks (#subnetworks) impacts the
performance metrics. It has been assumed that: (i) small-scale
networks are constituted by a single network; (ii) medium-scale
networks consist of two or more adjacent subnetworks (which
are deployed in the same area so that their coverage overlaps);
(iii) large-scale networks include multiple but distinct
subnetworks (their coverage does not overlap).

C. Results

With respect to the small-scale network, Fig. 2a shows that
in the SOD phase the increase of the SO population adversely
affects the DT, as well as a high RGR and the choice of a
reliable transmission protocol.

Fig. 2. Small scale networks: DT in SOD phase (a) when the #SOs changes;
PDR in IE phase (b) when the #SOs changes.

11

Such phenomena are particularly remarked when the SOs
exceed the 30 units while there are no consistent differences
between deterministic (D) or normal (N) data sources. In IE
phase, the increase of the SOs reduces the PDR only in the case
of unreliable protocol as shown in Fig 2b.

With respect to the medium-scale networks, Fig 3a
highlights that in the SOD phase if SOs are equally spread on
multiple subnetworks (we consider the case of five
subnetworks deployed in a squared grid with side of 2500
meters), the increase of the SOs number causes the DT
increase, while unreliable protocols, lower MGR or normal
data sources provide smaller DT values. Such trends are similar
to the ones related to the small-scale case. Fig 3b shows that if
the SOs are distributed on the same area, the RTT decreases
because the traffic is balanced on more subnetworks. In such a
case, the P2P paradigm outperforms the C/S.

Fig. 3. Medium-scale networks: DT in SOD phase (a) when the #SOs changes

(a); RTT in IE phase (b) when the #subnetworks changes.

With respect to large-scale networks, a different number of
non-overlapping subnetworks (5, 10, and 20) has been
considered, each one with the same number (50) of SOs. As
Fig. 4a highlights, since the subnetworks have no overlap, the
absence of mutual interferences makes the DT quite stable (the
subnetworks performance in the SOD phase is similar to the

single network case of the small-scale scenario). Again, the
reliable protocol as well as the 10/s MGR implies greater DT
while there are no substantial differences between D or N data
sources. These considerations hold for both the SOD and the IE
phases, as Fig. 4b shows. In particular, DT values of large-
scale multiple subnetworks scenario are comparable to the ones
of the small-scale single network scenario.

Fig. 4. Large-scale networks: DT in SOD phase (a) when the #subnet changes

(a); RTT in IE phase (b) when the #subnetworks changes.

V. CONCLUSION

The agent-based programming paradigm definitively
represents a viable approach to support the development of the
distributed and heterogeneous elements of a SO-oriented IoT.
Indeed, the agent abstraction provides an efficient and powerful
way to describe the SOs, that are self-contained, autonomous,
social, adaptive, and goal-directed building blocks of IoT
systems. At the same time, such IoT systems may be treated as
MASs, since they are dynamic, self-organized and situated
ecosystems. To facilitate the SOs development process and
speed up the IoT elements prototyping phase, middleware
solutions have been proposed since they provide useful general
and specific abstractions at different levels of granularity. The
agent-oriented ACOSO middleware represents an effective
framework for the developing of SOs able to perform

12

distributed computation, knowledge management and flexible
interaction with sensors and actuators devices. Beside the SOs
development process, the simulation of the under-development
IoT system is an equally important activity. Through the
Omnet++ platform, a set of simulations in different scale
scenarios has been performed and the related results presented,
with the focus on the communications between SOs.
Regardless of the considered small-medium-large scale,
simulation results highlight that the increase of SOs number
contributes to the network traffic, so causing lower
performance, especially if reliable protocols are adopted. This
implies that such kind of protocols should be adopted only if
the full reliability is a mandatory requirement. Performance is
also adversely affected by an unbalanced traffic load, which
may be due to the adoption of centralized communication
paradigms like C/S or by deterministic data sources. Both in
the medium- and in the large-scale cases, trends related to the
increase of SOs number and of their density, or about protocols
reliability, MGR and stochastic/deterministic data sources,
hold. However, with respect to medium-scale networks, the
presence of multiple overlapping subnetworks on the same area
produces interferences, so reducing the performance. If there
are no overlaps among the subnetworks as in the large-scale
case, instead, the communications are scalable and the
provided performance is improved. Future work will be
focused on the design of a methodology that systematically
supports the complete development of SO-based IoT systems
[13]: such methodology, by integrating ACOSO and Omnet++
with other frameworks like ELDA [29-31] and by maintaining
an agent-oriented approach, will aim to effectively model,
prototype and validate new generation of SO-based cyber-
physical systems within the IoT context.

REFERENCES

[1] S. Aguzzi, et al., “Definition of a Research and Innovation Policy
Leveraging Cloud Computing and IoT Combination,” European
Commission, Directorate-General of Communications Networks,
Content & Technology, Belgium, Rep. SMART 2013/0037, 2014.

[2] D. Miorandi, D. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, 2012, pp. 1497-1516.

[3] G. Kortuem, F. Kawsar, D. Fitton, V. Sundramoorthy, “Smart objects as
building blocks for the internet of things,”. Internet Computing, IEEE,
vol. 14, no. 1, 2010, pp. 44-51.

[4] M. J. Wooldridge, “Agent technology: foundations, applications, and
markets,” Springer Science & Business Media, 1998.

[5] W. Van der Hoek, and M. J. Wooldridge, “Multi-agent systems,”
Handbook of Knowledge Representation, 2008, pp. 887-928.

[6] A. Varga, “The OMNeT++ discrete event simulation system,”
Proceedings of the ESM’2001, vol. 9, no. S 185, 2001, p. 65.

[7] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, and W. Russo, “An
agent-based middleware for cooperating smart objects,” Highlights on
Practical Applications of Agents and Multi-Agent Systems, Springer
Berlin Heidelberg, 2013, pp. 387-398.

[8] G. Fortino, A. Guerrieri, and W. Russo, “Agent-oriented smart objects
development,” Computer Supported Cooperative Work in Design, 2012
IEEE 16th International Conference on. IEEE, 2012, pp. 907-912.

[9] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Middlewares for
smart objects and smart environments: Overview and comparison,”
Internet of Things Based on Smart Objects. Springer International
Publishing, 2014, pp. 1-27.

[10] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Integration of
agent-based and cloud computing for the smart objects-oriented IoT,”

Computer Supported Cooperative Work in Design, Proceedings of the
2014 IEEE 18th International Conference on, 2014, pp. 493-498.

[11] C. Savaglio, and G. Fortino, “Autonomic and Cognitive Architectures
for the Internet of Things,” Internet and Distributed Computing Systems,
Springer International Publishing, 2015, pp. 39-47.

[12] P. Desai, A. S. Pratikkumar, and A. Pramod, “Semantic gateway as a
service architecture for iot interoperability,” Mobile Services (MS),
2015 IEEE International Conference on, 2015, pp. 313-319.

[13] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Towards a
Development Methodology for Smart Object-Oriented IoT Systems: A
Metamodel Approach,” Systems, Man, and Cybernetics (SMC), 2015
IEEE International Conference on, 2015, pp. 1297-1302.

[14] G. Fortino, “Agents Meet the IoT: Toward Ecosystems of Networked
Smart Objects”, IEEE Systems, Man & Cybernetics Magazine, April
2016. doi: 10.1109/MSMC.2016.2557483.

[15] T. Leppänen, J. Riekki, M. Liu, E. Harjula, and T. Ojala, “Mobile agents
based smart objects for the internet of things,” Internet of Things Based
on Smart Objects, Springer International Publishing, 2014, pp. 29-48.

[16] A. Katasonov, et al. "Smart Semantic Middleware for the Internet of
Things," ICINCO-ICSO, vol. 8, 2008, pp. 169-178.

[17] A.M. Mzahm, M.S. Ahmad, and A. YC Tang, “Agents of Things (AoT):
An intelligent operational concept of the Internet of Things (IoT),”
Intelligent Systems Design and Applications (ISDA), 2013 13th
International Conference on. IEEE, 2013, pp. 159-164.

[18] D. Uckelmann, M. Harrison, and F. Michahelles, “An architectural
approach towards the future internet of things,” Springer Berlin
Heidelberg, 2011.

[19] I. Ayala, M. Amor, and L. Fuentes, “An agent platform for self-
configuring agents in the internet of things,” Infrastructures and Tools
for Multiagent Systems, 2012, p. 65.

[20] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “Role of
middleware for internet of things: A study,” International Journal of
Computer Science and Engineering Survey, vol.2, no.3, pp. 94-105.

[21] P. Vlacheas, et al., “Enabling smart cities through a cognitive
management framework for the internet of things,” Communications
Magazine, IEEE, vol. 51, no. 6, 2013, pp. 102–111.

[22] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE–A FIPA-compliant
agent framework,” Proceedings of PAAM, vol. 99, 1999, pp. 97-108.

[23] G. Fortino, A. Guerrieri, G. M. O'Hare,and A. Ruzzelli, “A flexible
building management framework based on wireless sensor and actuator
networks,” Journal of Network and Computer Applications, vol. 35, no.
6, 2012, pp. 1934-195.

[24] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari,
“Enabling effective programming and flexible management of efficient
body sensor network applications,” IEEE Transactions on Human-
Machine Systems, vol. 43, no. 1, 2013, pp. 115-133.

[25] A. Guerrieri, G. Fortino, A. Ruzzelli, and G. O'Hare, “A WSN-based
Building Management Framework to Support Energy-Saving
Applications in Buildings,” Hershey, PA, USA, IGI Global, 2011.

[26] G. Fortino, S. Galzarano, R. Gravina, and W. Li, “A framework for
collaborative computing and multi-sensor data fusion in body sensor
networks,” Information Fusion, vol. 22, 2015, pp. 50-70.

[27] G. Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio, “SPINE2:
developing BSN applications on heterogeneous sensor nodes,” IEEE Int.
Symposium on Industrial Embedded Systems, 2009, pp. 128-131.

[28] F. Bellifemine, G. Fortino, A. Guerrieri, and R. Giannantonio,
“Platform-independent development of collaborative Wireless Body
Sensor Network applications: SPINE2”, SMC 2009, pp. 3144-3150.

[29] G. Fortino, A. Garro, S. Mascillaro, and W. Russo, “Using event-driven
lightweight DSC-based agents for MAS modelling,” Int. Journal of
Agent-Oriented Software Engineering, vol. 4, no. 2, 2010, pp. 113-140.

[30] G. Fortino, and W. Russo, “ELDAMeth: An agent-oriented
methodology for simulation-based prototyping of distributed agent
systems,” Information and Software Technology, vol. 54.6, 2012, pp.
608-624.

[31] G. Fortino, A. Garro, and W. Russo, “An integrated approach for the
development and validation of multi-agent systems,” Int. Journal of
Computer Systems Science & Engineering, vol. 20.4, pp. 259-271, 2005.

13

