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Abstract—The proliferation of everyday smart devices able to 

sense, process, communicate and/or actuate, is changing the way 

we interact with the world around us. These novel cyber-physical 

smart devices, or simply Smart Objects (SOs), are the 

fundamental building blocks of the Internet of Things (IoT), a 

global and highly dynamic ecosystem in which heterogeneous 

typologies of device networks seamlessly interoperate. Although 

the IoT component technologies and enabling computing 

paradigms are not totally new, the development and analysis of 

an IoT system is still a complex process. In this paper the 

ACOSO (Agent-based COoperative Smart Object) middleware 

and the Omnet++ platform have been used as means for the SO-

based IoT systems development/management and simulation. 

Indeed, on one hand ACOSO provides effective instruments and 

a simple programming model to realize both cyber-physical SOs 

and IoT systems. On the other hand, leveraging on the 

parallelism between SOs/agents and the Omnet++ network 

nodes, simulations of agent-oriented IoT systems in different 

scale scenarios have been defined and conducted. 

Keywords—Internet of Things; Smart Objects; ACOSO; Agent-

based computing; Network simulation. 

I.  INTRODUCTION 

The Internet of Things (IoT) is being widely considered as 
the next revolution towards the digitalization of our society and 
economy, overturning the current production of goods and 
services. Only in the European Union, the IoT market value is 
expected to exceed one trillion euros in 2020, when it is 
foreseen that almost 26 billion of IoT devices will daily impact 
our life [1]. People, things and places will participate in the 
Internet, being globally identified, interconnected, discovered 
and queried. Everything will automatically but seamlessly 
interact, even without a steady human orchestration, thus 
providing novel cyber-physical services to both humans and 
machines. Although the IoT vision (of an horizontal and 
interconnected landscape) is unique and well-established, over 
the years three perspectives raised [2] that respectively 
emphasized the importance of the IoT devices, communication 
networking and semantic technologies. Although it is widely 
recognized that a variety of technologies and research areas 
contributes to the IoT, the “Things oriented” perspective is 
gaining more and more attention. As matter of fact, such 
“things” or smart objects (SOs) have been defined as 
fundamental IoT blocks [3] since they concretely and daily 
realize the bridging between the real and the virtual world. 

SOs, beside their specific purpose (e.g. refrigerating foods in 
the case of a smart fridge), are indeed able to sense the 
surrounding physical environment, elaborate the perceived 
data, share them (with human users or with other SOs) through 
adequate communication interfaces and, if necessary, to take 
tangible actions. The physical proximity or the similitude of 
purposes among multiple SOs enable the constitution of IoT 
systems, in which functional, technological and application-
specific heterogeneities should not prevent SOs to interoperate 
with each other. In order to cope with all such issues, the IoT 
has drawn several concepts from multiple paradigms (e.g. 
cloud computing, web-services, etc.), including from the 
Agent-Based Computing (ABC) paradigm [4]. In the past 
years, research and industrial experiences in a wide range of 
application domains (e.g. logistics, economics, social science, 
automation science) have already proved the advantages 
deriving from the use of the ABC in developing complex 
distributed systems under the form of MASs [5]. In the case of 
IoT, that can be itself considered as a loosely coupled, 
decentralized system of cooperating SOs, the ABC is even 
more suitable to support the development of the single SO (“in 
the small”) and of the overall IoT system (“in the large”). 
However, the IoT systems development process based on ABC 
is still in its infancy. Within such development process, the 
simulation activity plays a crucial role: indeed, it allows the 
understanding of system/network performance and dynamics 
before the actual SO-based system implementation and 
deployment. In such case too, however, further efforts need to 
be made. 

In this paper we propose the simulation of agent-oriented 
IoT systems in small-medium-large scale scenarios through the 
Omnet++ simulation platform [6], with a specific attention to 
the inter-SO communications phase. By following such 
approach, low-level aspects (wireless coverage issues, physical 
environment and obstacles modeling, protocols implementation 
details, etc.) are managed by Omnet++ while the ACOSO 
middleware [7, 8] provides an effective agent-oriented SO 
programming and design model. Indeed, ACOSO is 
specifically conceived for the SO development, management 
and deployment in any application context which requires 
proactivity and reactivity with respect to the surrounding 
environment and to other SOs. The rest of the paper is 
organized as follows. In Section II, the background of the SO-
based IoT is provided, together with a brief related work on the 
available agent-oriented IoT contributions. In Section III, the 
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ACOSO middleware is briefly summarized, focusing on its 
multi-layered and agent-oriented architecture. Simulations of 
agent-oriented IoT systems characterized by different scales 
and configurations are reported in Section IV. Conclusion and 
future work are finally delineated. 

II. BACKGROUND AND RELATED WORK 

A. Smart Object-based IoT 

The advancements on integrated circuitry, microelectro-
mechanical systems (MEMS), embedded technologies, and 
wireless communications enabled the evolution of conventional 
everyday things in enhanced entities commonly defined Smart 
Objects (SOs) [3]. Differently from passive RFiD systems and 
conventional Wireless Sensor Networks (WSNs), an SO is able 
to provide identification, sensing/actuation but also to 
understand and react to its environment [9], performing object-
to-object communications, ad-hoc networking and complex 
goal-oriented decision-making. SOs with limited computational 
resources (e.g. RAM, CPU) may be usefully supported by the 
Cloud computing [10], which enables devices virtualization 
and dynamic data processing (e.g. data integration/fusion). 
More powerful SOs, instead, may be designed by following the 
principles of autonomic computing and of the cognitive 
networks, in order to become even more autonomous, 
proactive, context-aware and intelligent [11]. In both cases, 
SOs are suitable to replace the human operators in handling the 
seamless data flow between different networks typologies, like 
BAN (Body Area Networks), LAN (Local Area Networks, e.g. 
Smart Home), MAN (Metropolitan Area Networks, e.g. Smart 
Hospital) and WAN (Wide Area Networks, e.g. Smart City). 
On the other hand, a steady human orchestration of such a huge 
amount of devices and device-generated data is not feasible in 
the IoT context. The synergic cooperation of multiple SOs may 
in fact generate complex and outstanding cyber-physical 
services for both humans and machines, but only if the SOs are 
adequately designed and implemented. In fact, the SOs are 
usually functional and technological heterogeneous with each 
other, following different communication protocols and data 
formats standards on the basis of their application domains. 
Such issues are currently leading to the spread of several IoT 
silos that are unable to interoperate [12], preventing the fruition 
of the benefits of a fully-realized global IoT. So, proper 
development methodologies, modeling paradigms, software 
abstractions and interaction patterns need to be adopted by 
design [13] in order to overcome SOs heterogeneities and to 
make SOs completely interoperable. 

B. Agent-oriented IoT 

The IoT ecosystem development process includes multiple 
requirements, both at system (e.g. scalability, robustness, 
standards compliance, discovery) and at thing level (e.g. 
interoperability, virtualization, embedded intelligence). The 
ABC offers the necessary solutions to satisfactorily address 
such requirements by running agents in IoT nodes and hence 
by treating the IoT ecosystem as a MAS. The idea of tightly 
coupling each SO with (at least) one agent [14] has multiple 
benefits since the agent(s) allows mitigating the SO host 
hardware/software deficiencies or limitations. In fact, agents 
are able to encapsulate complex functionalities abstracting 
them from the underlying implementation details, 

communicate over different access technologies 
simultaneously, interact with pro-activeness, autonomy and 
sociability. Consequently, agents running in different 
cooperating SOs constitute a decentralized MAS, maximizing 
interoperability among heterogeneous sub-systems and 
distributed resources, facilitating the system modeling and 
development, increasing scalability and robustness but, at the 
same time, reducing the design time as well as the time-to-
market. These motivations have driven the design of several 
agent-based IoT architectures [11, 15-21] that exploit the 
twofold ABC role of: 

(i) Modeling paradigm, because most of the SO main 
features may be described through agent-related concepts. For 
example, SO functionalities may be expressed in terms of 
goals, SO working plan in terms of behaviors, SO 
augmentation devices (e.g. sensors and actuators) in terms of 
dynamically bindable agent resources, etc. In this direction, 
[15] and [16] propose coarse-grained agent-oriented SO 
models, characterized by a high-degree of abstraction to 
support the preliminary development phase of SO analysis.  

(ii) Programming paradigm, by exploiting the agent as a 
virtual networked alias of the real object [17, 21]. The 
virtualization process allows the integration of the SOs in the 
cloud or in the SOA/REST world [19], enabling even 
constrained SOs to provide complex cyber-physical services. In 
such directions, the virtualization allows also the federation of 
semantically interoperable SOs, enabling the mashup of their 
offered services in accordance with both the application and 
user requirements [18]. 

A particular component that plays a crucial role within 
most of the distributed architectures is the middleware. In the 
context of the IoT systems, different agent-based middleware 
have been developed so far [9, 20] since the ABC provides 
powerful mechanisms to realize efficient coordination 
structures, SO discovery, resources handling and knowledge 
management. As matter of fact, the exploitation of well-
established agent communication standards and interfaces (e.g. 
IEEE FIPA [22]) contributes in hiding the SO heterogeneities 
both at physical and at communication layers. Moreover the 
ABC allows the development of both semi/centralized 
(following the IEEE FIPA model that foresees the Directory 
Facilitator for mapping agents and their services) and 
distributed (by following a P2P approach) service discovery. 
Such features have particular importance since the IoT is a 
dynamic scenario in which SOs seamlessly appear, disappear, 
as well as extemporary interact with each other. The 
application of the ABC at middleware layer is also suitable to 
integrate agents with semantic technologies (e.g. ontology), 
facilitating the data and the context management as well as the 
implementation of security mechanisms. Doing so, agents 
provide intelligence, context-awareness, robustness and 
flexibility to single SOs as well as to the whole IoT system. 

III. ACOSO (AGENT-BASED COOPERATING SMART OBJECT) 

ACOSO (Agent-based COoperating Smart Objects) [7, 8] 
is a middleware providing a (in-the-small and in-the-large) SO 
programming model through an agent-based approach. 
ACOSO presents an event-driven and multi-layered 
architecture that allows the SOs to react to external stimulus, 
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fulfill specific goals, execute inference rules, and use 
local/remote knowledge bases. Following a bottom-up 
approach, the ACOSO platform presents the following layers: 

i. WSAN management layer, which programs and 
manages the network of sensors and/or actuators 
embedded in a SO. Such layer allows the management 
of WSANs (Wireless Sensor and Actuator Networks) 
through the BMF (Building Management Framework) 
[23] and of body sensor networks through the SPINE 
(Signal In-Node Processing Environment) [24]. 

ii. Agent-based middleware layer, relying on the JADE 
platform, that provides an effective agent-oriented 
management/communication infrastructure. In 
particular, JADE-based SOs are managed by the AMS 
(Agent Management System), communicate through the 
ACL-based message transport system and use an 
extended version of the DF (Directory Facilitator) to 
look up SOs and other agents. JADE provides also a 
coordination model implementing both the message 
passing (MessagingService) and the publish/subscribe 
(TopicManagementService) communication paradigms 
through a ServiceManager. The original JADE DF, 
indeed, has been purposely modified/extended in 
ACOSO to support a more situated and dynamic SO 
registration, indexing and discovery on the basis of its 
specific functional (e.g. provided services) and/or non-
functional (e.g. location, dimension, identity) features. 
Since the JADE platform may run both on Java-enabled 
and Android devices (by means of LEAP, a JADE 
extension), this layer can concretely implement the 
high-level SO layer atop PC, smartphones, tablets, etc. 

iii. High-level SO layer, which comprises a set of 
subsystems describing the SO internal architecture. In 
detail, each SO goal is encapsulated in state-based tasks, 
which are driven by events and managed by the Task 
Management Subsystem. The Communication 
Management Subsystem provides a common interface 
for SOs communications: the Communication Manager 
Message Handler translates incoming messages into 
internal events that are managed by the 
EventDispatcher. The Device Management Subsystem 
manages the SO sensor/actuator devices by means of 
specific DeviceAdapters. The KB Management 
Subsystem manages the object knowledge base. In such 
subsystems an important role is played by the adapters 
that represent pluggable software components allowing 
SOs to interoperate with external entities or systems. 
For example, within the Device Management 
Subsystem, two DeviceAdapters are currently defined 
to interact with the WSAN management layer: the 
BMFAdapter, which allows managing WSANs through 
the BMF [25], and the SPINEAdapter, which allows 
managing BSNs through SPINE [26]–[28]. Within the 
Communication Management Subsystem, instead, the 
TCPAdapter and UDPAdapter manage SO 
communication with external networked entities based 
on TCP and UDP, respectively. The aforementioned 
agent-oriented subsystems that compose the High-level 
SO layer are platform neutral but, at the Agent-based 
middleware layer, the Tasks, the EventDispatcher and 
the Communication Manager Message Handler have 
been implemented as JADE Behaviors (so their 
execution is based on the mechanisms provided by the 
basic JADE behavioral execution model), while the SO 
messages are defined as ACL messages. 

Fig. 1. The ACOSO three-layered architecture 
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IV. SIMULATIONS 

The simulation of IoT systems allows the validation of 
models, protocols and algorithms before the actual SO 
deployment phase. Due to such reasons, it is an important but, 
at the same time, challenging task. In IoT systems of different 
scales the number of the SOs may vary (from body sensor 
networks with less than dozens of SOs, to Smart City with 
much more than thousands of devices), with a different degree 
of density, as well as the SO services require different 
communication paradigms. Just the SO interactions and the 
consequent service provision/fruition may be influenced by 
factors unrelated to the applications but specifically associated 
to the networking (e.g. traffic congestion, wireless signal 
attenuation and coverage, etc.). In this paper, we focused on the 
communication among SOs (previously modeled with the 
ACOSO approach) by simulating IoT networks through 
Omnet++[6]. As matter of facts, the parallelism between 
SOs/agents and Omnet++ network nodes is straightforward. In 
fact, each network node can be considered as an autonomous 
SO/agent whose behaviors and tasks can be implemented at the 
application layer. All the other tasks related to transport-
network-link protocol implementations, wireless connectivity 
issues, physical environment modeling can be instead carried 
out by Omnet++. In the following, the results of IoT systems 
simulations are shown, with a particular attention to the inter-
SO communication. These simulations aim at investigating 
possible issues or unpredicted situations, and at validating IoT 
systems design choices and parameters. Application-neutral 
scenarios and SOs exchanging empty messages without any 
additional application logic have been considered, thus 
providing more generality to the obtainable simulation results. 

A.  Communication settings 

Simulations have inspected IoT networks in the SO Discovery 
phase (SOD) and in the Information Exchange phase (IE) by 
exploiting in both cases reliable (TCP) and unreliable (UDP) 
transport protocols. Metrics, parameters and patterns that have 
been tested in the simulations are listed as follows: 

 Metrics: in the SOD phase the discovery time (DT) 
and the request delivery ratio (RDR) have been 
measured; in the IE phase the round trip time (RTT) 
and the message delivery ratio (MDR). 

 Parameters: in the SOD phase all the nodes, with a 
different request generation rate (RGR), contact a 
specific one that holds the registry of the current 
active SOs and of their provided services. In the IE 
phase the round trip time (RTT) and the message 
delivery ratio (MDR) have been measured when 
nodes adopt different message generation rates 
(MGR). Both in SOD and in IE phases, different 
request/data generation models (RGM and DGM, 
respectively) are used: a Deterministic one (1 pk/s and 
10 pk/s) and a stochastic Normal one (with 0.5 mean 
and 0.2 variance). 

 Patterns: in the SOD phase SOs communicate 
according to the Client/Server (C/S) paradigm; in the 
IE phase, SOs exchange simple messages by 

following either a C/S or a Peer-to-Peer (P2P) 
paradigm. 

B. Simulation Scenarios 

Performance metrics presented in Section IV-A have been 
evaluated in the context of small-, medium-, large-scale IoT 
networks with different SOs density. In particular, since 
network congestion may increase depending of the SOs 
population, the performance metrics have been analyzed when 
the number of the SOs (#SOs) increases. Small-scale networks 
have been considered limited to 100 nodes, medium-scale 
networks to 500 nodes and large-scale networks to 1000. 
Moreover, it has been analyzed how the SO distribution in a 
different number of subnetworks (#subnetworks) impacts the 
performance metrics. It has been assumed that: (i) small-scale 
networks are constituted by a single network; (ii) medium-scale 
networks consist of two or more adjacent subnetworks (which 
are deployed in the same area so that their coverage overlaps); 
(iii) large-scale networks include multiple but distinct 
subnetworks (their coverage does not overlap). 

C. Results 

With respect to the small-scale network, Fig. 2a shows that 
in the SOD phase the increase of the SO population adversely 
affects the DT, as well as a high RGR and the choice of a 
reliable transmission protocol. 

 
Fig. 2. Small scale networks: DT in SOD phase (a) when the #SOs changes; 
PDR in IE phase (b) when the #SOs changes. 
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Such phenomena are particularly remarked when the SOs 
exceed the 30 units while there are no consistent differences 
between deterministic (D) or normal (N) data sources. In IE 
phase, the increase of the SOs reduces the PDR only in the case 
of unreliable protocol as shown in Fig 2b. 

With respect to the medium-scale networks, Fig 3a 
highlights that in the SOD phase if SOs are equally spread on 
multiple subnetworks (we consider the case of five 
subnetworks deployed in a squared grid with side of 2500 
meters), the increase of the SOs number causes the DT 
increase, while unreliable protocols, lower MGR or normal 
data sources provide smaller DT values. Such trends are similar 
to the ones related to the small-scale case. Fig 3b shows that if 
the SOs are distributed on the same area, the RTT decreases 
because the traffic is balanced on more subnetworks. In such a 
case, the P2P paradigm outperforms the C/S. 

 
Fig. 3. Medium-scale networks: DT in SOD phase (a) when the #SOs changes 

(a); RTT in IE phase (b) when the #subnetworks changes. 

With respect to large-scale networks, a different number of 
non-overlapping subnetworks (5, 10, and 20) has been 
considered, each one with the same number (50) of SOs. As 
Fig. 4a highlights, since the subnetworks have no overlap, the 
absence of mutual interferences makes the DT quite stable (the 
subnetworks performance in the SOD phase is similar to the 

single network case of the small-scale scenario). Again, the 
reliable protocol as well as the 10/s MGR implies greater DT 
while there are no substantial differences between D or N data 
sources. These considerations hold for both the SOD and the IE 
phases, as Fig. 4b shows. In particular, DT values of large-
scale multiple subnetworks scenario are comparable to the ones 
of the small-scale single network scenario. 

 
Fig. 4. Large-scale networks: DT in SOD phase (a) when the #subnet changes 

(a); RTT in IE phase (b) when the #subnetworks changes. 

V. CONCLUSION 

The agent-based programming paradigm definitively 
represents a viable approach to support the development of the 
distributed and heterogeneous elements of a SO-oriented IoT. 
Indeed, the agent abstraction provides an efficient and powerful 
way to describe the SOs, that are self-contained, autonomous, 
social, adaptive, and goal-directed building blocks of IoT 
systems. At the same time, such IoT systems may be treated as 
MASs, since they are dynamic, self-organized and situated 
ecosystems. To facilitate the SOs development process and 
speed up the IoT elements prototyping phase, middleware 
solutions have been proposed since they provide useful general 
and specific abstractions at different levels of granularity. The 
agent-oriented ACOSO middleware represents an effective 
framework for the developing of SOs able to perform 
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distributed computation, knowledge management and flexible 
interaction with sensors and actuators devices. Beside the SOs 
development process, the simulation of the under-development 
IoT system is an equally important activity. Through the 
Omnet++ platform, a set of simulations in different scale 
scenarios has been performed and the related results presented, 
with the focus on the communications between SOs. 
Regardless of the considered small-medium-large scale, 
simulation results highlight that the increase of SOs number 
contributes to the network traffic, so causing lower 
performance, especially if reliable protocols are adopted. This 
implies that such kind of protocols should be adopted only if 
the full reliability is a mandatory requirement. Performance is 
also adversely affected by an unbalanced traffic load, which 
may be due to the adoption of centralized communication 
paradigms like C/S or by deterministic data sources. Both in 
the medium- and in the large-scale cases, trends related to the 
increase of SOs number and of their density, or about protocols 
reliability, MGR and stochastic/deterministic data sources, 
hold. However, with respect to medium-scale networks, the 
presence of multiple overlapping subnetworks on the same area 
produces interferences, so reducing the performance. If there 
are no overlaps among the subnetworks as in the large-scale 
case, instead, the communications are scalable and the 
provided performance is improved. Future work will be 
focused on the design of a methodology that systematically 
supports the complete development of SO-based IoT systems 
[13]: such methodology, by integrating ACOSO and Omnet++ 
with other frameworks like ELDA [29-31] and by maintaining 
an agent-oriented approach, will aim to effectively model, 
prototype and validate new generation of SO-based cyber-
physical systems within the IoT context. 
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