Building a Scalable Distributed Online Media Processing
Environment

Shadi A. Noghabi
advised by: Roy H. Campbell, Indranil Gupta

University of lllinois at Urbana-Champaign,
{abdolla2, rhc, indy}@illinois.edu

ABSTRACT

Media has become dominant in all aspects of human lives,
from critical applications such as medical, military, and se-
curity (e.g. surveillance cameras) to entertainment appli-
cations such as social media and media sharing websites.
Billions of massive media objects (e.g., videos, photos, doc-
uments, etc.) are generated every second with high diversity
among them (in terms of sizes and formats). These objects
have to be stored and retrieved reliably, with low latency
and in a scalable while efficient fashion. Additionally, var-
ious types of processing are done on media objects, from
simple compressions and format conversion, to more com-
plex machine learning algorithms detecting certain patterns
and objects.

Existing large-scale storage and processing systems face
several challenges when handling media objects. My re-
search focuses on building an unified storage and processing
environment tailored specifically for media objects, while
maintaining high efficiency and scalability. I have built a
scalable, load-balanced, efficient storage system optimized
for media objects based on their unique access patterns.
Currently, I am working on developing an efficient media
processing system and integrating these two systems into
one framework.

Keywords

Media Processing, Distributed Storage, Online Processing

1. INTRODUCTION

During the past decade, media has become extremely pop-
ular. Based on [7], hundreds of hours of videos (~ hundreds
of GBs) are uploaded per minute in YouTube, the largest
Internet video database. These videos have to be processed,
reformatted, compressed, verified, and categorized, while
being uploaded. Moreover, hundreds of thousands of hours
of videos are viewed per minute, from all around the globe.
All these videos should be stored and retrieved reliably (with

Proceedings of the VLDB 2016 PhD Workshop, September 9, 2016. New
Delhi, India.

Copyright (c) 2016 for this paper by its authors. Copying permitted for
private and academic purposes.

no data loss or unavailability) from a distributed storage at
YouTube. This, is only one example of the need for process-
ing and storing large media objects. Many other examples
can be found in a wide range of applications from medi-
cal imagery and surveillance cameras to social networks and
online shopping.

Handling this massive amount of media poses a number
of unique challenges. First, a diverse range of media (pho-
tos, videos, documents, etc.) with various sizes (from a few
KBs to a few GBs), should be processed efficiently at the
same time. Second, there is an ever-growing amount of data
that needs to be stored, served, and processed in a linearly
scalable fashion. Third, in many applications (e.g., machine
learning applications), processing is both data and CPU in-
tensive, causing several difficulties in resource scheduling.
My research focuses on building an unified online environ-
ment tailored specifically for storing and processing these
diverse massive media objects, while maintaining efficiency
and scalability.

First, we need to store this ever-growing enormous amount
of media efficiently. Existing distributed storage systems,
including file systems [21, 26] and key value stores [12, 16],
face several challenges when serving media objects. These
systems impose additional unnecessary overhead (such as
rich metadata), and are not efficient in handling both mas-
sive GB objects and many small objects, at the same time.
Therefore, we need a scalable storage system tailored specif-
ically for diverse media objects.

Additionally, media objects have to be processed in a
timely manner. Various types of processing is conducted on
media objects including: pattern matching (e.g., detecting
pornography), categorization (e.g., tagging photos), corre-
lation detection (e.g., recognizing a burglary in a network
of surveillance cameras), compression and resizing, format
conversion, and matching media objects (e.g., deduplica-
tion and checking copy-write). There has been extensive
research on optimizing each of these applications, such as
OpenCV and ShapeLogic [3, 4], focusing on a single ma-
chine. Recently, the trend has moved toward distributed
environments. HIPI, MIPr, and 4Quant [22, 23, 2, 6], have
been developed as distributed offline media processing sys-
tems. However, in many use cases, especially in sensitive
areas such as security and medical, we need real-time pro-
cessing. Even in less critical areas, such as social networks,
delays (more than a few seconds or minutes) could cost mil-
lions of dollars. There has been some effort performing real-
time media processing by building libraries on top of ex-
isting distributed online frameworks [5]. However, current

online frameworks are not optimized for massive media ob-
jects since they do not focus on minimizing data movement.
Therefore, we need an online processing framework designed
and optimized with the goal of processing large media ob-
jects.

2. MEDIA STORAGE

As the first step in my research, I have been focusing on
designing an efficient storage for media objects. Handling
media poses a number of unique challenges. First, due to
diversity in media types, media object sizes vary significantly
from tens of KBs (e.g., profile pictures) to a few GBs (e.g.,
videos). The system needs to store both massive media ob-
jects and a large number of small media objects efficiently.
Second, there is an ever-growing number of media that need
to be stored and served. This rapid growth in requests mag-
nifies the necessity for a linearly scalable system (with low
overhead). Third, the variability in workload and cluster ex-
pansions can create unbalanced load, degrading the latency
and throughput of the system. This creates a need for load-
balancing. Finally, data has to be stored and retrieved in
a fast, durable, and highly available fashion. For example,
when a user uploads a media object in social network, all
his/her friends from all around the globe should be able to
see the media object with very low latency, even if parts of
the internal infrastructure fail. To provide these properties,
data has to be reliably replicated in multiple datacenters,
while maintaining low latency for each request.

Several systems have been designed for handling a large
amount of data, but none of them satisfactorily meet the
requirements and scale media processing needs. There has
been extensive research into distributed file systems [20, 17,
14, 21, 26]. As pointed out by [11, 15], the unnecessary
additional capabilities these systems provide, such as the
hierarchical directory structure and rich metadata, are an
overkill for a media storage.

Many key value stores [13, 16, 10, 12| have also been
designed for storing a large number of objects. Although
these systems can handle many small objects, they are not
optimized for storing large objects (tens of MBs to GBs).
Further, they impose extra overhead for providing consis-
tency guarantees while these are typically not needed for
immutable data. Some examples of these overheads include
using vector clocks, conflict resolution mechanism, logging,
and central coordinators.

A few systems have been designed specifically for large
immutable objects including Facebook’s Haystack [11] along
with f4 [18] and Twitter’s Blob Store [25]. However, these
systems either become imbalanced (under-utilizing some of
the nodes) or do not scale beyond a point.

Thus, through a collaboration with LinkedIn, we devel-
oped a scalable load-balanced distributed storage system
built specifically for media objects (described below) *. Am-
bry has been running in LinkedIn’s production environment
for the past 2 years, serving up to 10K requests per second
across more than 400 million users. We have published our
work “Ambry: LinkedIn’s Scalable Geo-Distributed
Object Store” in SIGMOD 2016 [8].

!The project is open-source and the code can be found at

[1].

Social networks are one of the biggest sources of media
objects, with hundreds of millions of users continually up-
loading and viewing photos, videos, etc. Typically, these
media objects are written once, frequently accessed, never
modified, and rarely deleted. We leveraged this immutable
read-heavy access pattern of media objects towards Am-
bry. Ambry is a scalable distributed storage designed for
efficiently handling both massive media objects (GBs) and
large number of small media objects (KBs). Ambry utilizes
techniques such as decentralized design, asynchronous repli-
cation, rebalancing mechanisms, zero-cost failure detection,
and OS caching. Using these techniques, Ambry provides
high throughput (utilizing up to 88% of the network) and
low latency (less than 50 ms latency for 1 MB object), while
maintaining load balancing amongst nodes.

3. PROCESSING MEDIA OBJECTS

As the next step, I am currently working on building a
distributed online processing system, optimized for media
objects. Distributed stream processing systems have been
designed for processing enormous amount of data in a near
real-time fashion [24, 9, 19, 27]. Conceptually, these sys-
tems are a great fit for media processing. Stream processing
systems are capable of processing massive amount of data in
parallel, as the data is generated in a near real-time fashion.

However, existing systems are not optimized for media
and incur a lot of data movement. Many of these system
include multiple stages of data copy and/or fetching data
over the network. Although data movement may not be a
dominant factor for processing small data, this is not true
for massive media objects.

One of the main causes of data movement is reading and
writing data from an external storage system (remote state),
as opposed to supporting fault-tolerant locally stored data
(local state). For example, for providing exactly-once guar-
antees®, Millwheel [9] queries Bigtable [12] on each message
it receives to confirm that message has not been processed
before. Although an external storage provides faster boot-
strap and recovery time, it increases latency, consumes net-
work bandwidth, and can cause denial of service (DOS) for
the external storage.

Currently, I am collaborating with LinkedIn on develop-
ing Samza, a scalable distributed stream processing system
supporting local state. Samza provides fault-tolerant local
state by using local database instances in each node, along
with a compacted changelog for failure recovery. Each lo-
cal database instance stores data on disk, providing TBs of
space per machine. Additionally, by batching writes and
caching popular data in memory, it reaches performance
close to an in memory storage. By using local state, we
can implement exactly-once guarantees via storing processed
message ids locally (with very low latency), and replaying
the changelog if failures happen.

We ran an performance benchmark to evaluate the effect
of using local state, compared to using remote state. We
used two workloads

e ReadWrite: similar to a word count application read-
ing the current count of a specific word and updating.

2Exactly-once guarantees means processing each message
exactly once, even in presence of failures and late arrivals.

10000000

1000000 -
100000 -

10000 -
" ReadWrite
®ReadOnly

1000 -

100 -

Throughput (messages/s)

10 +

1
Network local in- local Rocks local w/o remote DB
memory DB caching

Figure 1: Comparision of different stores in samza
under two differnt workloads. This graph compares
maximum throughput acivable by the network, lo-
cal inmemory storage, local rocks db storage, local
rocks db with disabling caching, and using a remote
storage.

e ReadOnly: similar to a large join of a infinite stream
and a table. This workload reads data from the storage
and concatenating it with the input message.

We ran the workload on a 4 node cluster of beefy ma-
chines, using multiple stores. Based on our initial results,
using local state improves throughput up to 100x compared
to using remote state, as shown in Figure 1. Using a local
Rocks DB with caching enabled reaches almost the perfor-
mance of a local in memory store and both cases saturate the
network. Even with no caching, Rocks DB reaches almost
half the throughput of a in-memory store. However, the
remote storage is orders of magnitude (up to 100x) slower.

We also measured the latency for each test and it followed
a similar pattern. When using a local (Rocks DB or inmem-
ory) store the latency per input data was a few microseconds
in all test (8 to 30 microseconds). However, using a remote
store this latency was 3 orders of magnitude higher (4-10
milliseconds). This is mainly because of the added delay for
going over the network and data copies, and the overhead
of providing consistency in a fault-tolerant distributed store
(with multiple replicas).

Moreover, we have developed a host affinity mechanism
that tries to reduce the failure recovery time by leveraging
the state already stored on disk. This mechanism favors
brining up failed containers on machines they were placed
before, reusing the state stored on disk. Using host affin-
ity we are able to drop the recovery time 5-10x, reducing
the recovery time from several minutes to only a few sec-
onds. Also, using host affinity, the overhead of recovery is
almost a constant value irrespective of the size of the state
to be rebuilt. This is because only the fraction of the state
not flushed to disk has to be rebuilt. Therefore, using this
mechanism and local state we are able to provide fast fail-
ure recovery, close to a remote state, while not incurring
the overhead of querying a remote database on each input
message processed.

4. FUTURE RESEARCH

Although local state significantly improves performance
(specially for applications sensitive to data movement), it

is not sufficient for providing an efficient media-processing
environment. Due to the large media sizes, the local state
may not be enough for storing all the data associated with
an application.

For example, assume we have a continuously changing ref-
erence set of fraud media, and a fraud detection application
that compares recently posted media against a subset of the
reference set (based on a similarity metric such as RGB ra-
tio). Using local state, we can partition the reference set
based on the similarity metric set across multiple machines;
access the set locally; and update the reference set when-
ever needed. However, if the reference set grows too large
(e.g., videos), the local state capacity will not be enough un-
less by scaling to a bigger cluster with many underutilized
machines. I plan to overcome this issue by integrating the
distributed storage system and the processing system into
one framework. This framework will utilize local state as a
cache for storing/retrieving media by offloading data to the
storage system, whenever needed.

Additionally, processing even a single massive media ob-
ject (e.g., a high quality video) in a timely manner can go
beyond the capabilities of a single machine. Chunking large
media objects into smaller ones and processing chunks in
parallel, mitigates this issue. However, chunking introduces
many challenges including: rebuilding the large object in a
system where data chunks can be processed out of order or
infinitely delayed; processing data without losing accuracy;
and handling data dependency amongst data chunks. As my
future direction, I plan to provide built-in chunking and re-
building mechanism for large media types, without affecting
accuracy.

In a nutshell, as the future direction, I plan to further
optimize Samza to efficiently handle diverse media types and
sizes (ranging from a few KBs to a few GBs), and integrate
Samza and Ambry into a unified scalable media storage and
processing environment.

5. REFERENCES

[1] Ambry. http://www.github.com/linkedin/ambry,
(accessed Mar, 2016).

[2] HIPI: Hadoop image processing interface.
http://hipi.cs.virginia.edu/index.html, accessed
Mar, 2016.

[3] OpenCV: Open source computer vision.
http://wuw.opencv.org/, accessed Mar, 2016.

[4] ShapeLogic. http://www.shapelogic.org, accessed
Mar, 2016.

[5] Stormcv. https://github.com/sensorstorm/StormCV,
accessed Mar, 2016.

[6] Transforming images into information.
http://4quant.com, accessed Mar, 2016.

[7] YouTube statistics. https://www.youtube. com/yt/
press/en-GB/statistics.html, accessed Mar, 2016.

[8] S. A. Noghabi, S. Subramanian, P. Narayanan,

S. Narayanan, G. Holla, M. Zadeh, T. Li, I. Gupta,
and R. H. Campbell. Ambry: Linkedin’s scalable
geo-distributed object store. In Proceeding of the ACM
Special Interest Group on Management of Data
(SIGMOD), 2016.

[9] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,

J. Haberman, R. Lax, S. McVeety, D. Mills,
P. Nordstrom, and S. Whittle. Millwheel:

[10]

[11]

[12]

[20]

[21]

[22]

[23]

fault-tolerant stream processing at internet scale. In
Proceeding of the Very Large Data Bases Endowment
(VLDB), 2013.

A. Auradkar, C. Botev, S. Das, D. De Maagd,

A. Feinberg, P. Ganti, L. Gao, B. Ghosh,

K. Gopalakrishna, et al. Data infrastructure at
LinkedIn. In Proceeding of the IEEE International
Conference on Data Engineering (ICDE), 2012.

D. Beaver, S. Kumar, H. C. Li, J. Sobel, and

P. Vajgel. Finding a needle in Haystack: Facebook’s
photo storage. In Proceeding of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and

R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2), 2008.

G. DeCandia, D. Hastorun, M. Jampani,

G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceeding of the ACM SIGOPS Operating Systems
Review (OSR), 2007.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. In Proceeding of the ACM
SIGOPS Operating Systems Review (OSR), 2003.
Hortonworks. Ozone: An object store in HDFS.
http://hortonworks.com/blog/
ozone-object-store-hdfs/, 2014 (accessed Mar,
2016).

A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. In Proceeding
of the ACM SIGOPS Operating Systems Review
(OSR), number 2, 2010.

J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. Rosenthal, and F. D. Smith. Andrew:
A distributed personal computing environment.
Communications of the ACM (CACM), 29(3), 1986.
S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,

W. Liu, S. Pan, S. Shankar, V. Sivakumar, et al. F4:
Facebook’s warm blob storage system. In Proceeding
of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In Proceeding
of IEEE International Conference on Data Mining
Workshops (ICDMW), 2010.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun
network file system. In Proceeding of the USENIX
Summer Technical Conference, 1985.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In Proceeding of
the IEEE Mass Storage Systems and Technologies
(MSST), 2010.

A. Sozykin and T. Epanchintsev. MIPr - a framework
for distributed image processing using Hadoop. In
Proceeding of the IEEE Application of Information
and Communication Technologies (AICT), 2015.

C. Sweeney, L. Liu, S. Arietta, and J. Lawrence. HIPI:
a Hadoop image processing interface for image-based

24]

mapreduce tasks. Chris. University of Virginia, 2011.
A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,

J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, et al. Storm@ twitter. In Proceeding of the
ACM Special Interest Group on Management of Data
(SIGMOD), 2014.

Twitter. Blobstore: Twitter’s in-house photo storage
system. https://blog.twitter.com/2012/
blobstore-twitter-s-in-house-photo-storage-system,
2011 (accessed Mar, 2016).

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceeding of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant
streaming computation at scale. In Proceeding of the
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2013.

