
Consistency Analysis for User Requirements Notation

Models

Okhaide Akhigbe1, Daniel Amyot1, Amal Ahmed Anda1, Lysanne Lessard2, and

Daoyang Xiao2

1 School of Electrical Engineering and Computer Science,
2 Telfer School of Management

University of Ottawa, Ottawa, Canada

{okhaide, damyot, aanda027, dxiao089}@uottawa.ca,

lessard@telfer.uottawa.ca

Abstract. The User Requirements Notation (URN) is a standard modeling lan-

guage that includes two complementary views, one for goals with the Goal-

oriented Requirement Language (GRL) and one for scenarios/processes with

Use Case Maps (UCM). The URN standard, however, does not provide means

of checking consistency between the GRL and UCM views, leading to models

that are potentially erroneous. This paper presents a preliminary set of rules for

checking common consistency properties in URN models. These rules have

been implemented as user-selectable OCL constraints in the jUCMNav tool. Fu-

ture opportunity for research in that space are also identified.

Keywords: User Requirements Notation · GRL · Goal · Scenario · Consistency

· OCL · jUCMNav

1 Introduction

The User Requirements Notation (URN) is a standard modeling language used to

model and analyze requirements [1, 2]. URN includes two complementary views, the

Goal-oriented Requirement Language (GRL) for modeling goals, actors, indicators,

and their relationships, and the Use Case Map (UCM) notation for modeling respon-

sibilities, processes/scenarios, and their underlying components. GRL and UCM

models can be connected using typed URN Links by specifying user-defined relation-

ships between any pair of URN model elements. URN Links establish traceability and

enable completeness and consistency analysis between GRL and UCM models.

Although the URN standard provides well-formedness rules to ensure some con-

sistency within each of the GRL and UCM views, it does not provide means of check-

ing consistency across these views, leading to models that are potentially erroneous.

To address this gap, we present a preliminary set of user-selectable rules for check-

ing common consistency properties in URN models in a way that exploits URN Links

as well as URN metadata (i.e., annotations on URN model elements). The rules were

created using UML’s Object Constraint Language (OCL) [3], and implemented in the

jUCMNav tool. jUCMNav is a free plugin for Eclipse used to create and analyze

Copyright © 2016 for this paper by its authors. Copying permitted for private and academic purposes.

URN models [4]. This paper is a first step towards user-selectable rules supporting

automated consistency analysis between the GRL and UCM views of a URN model.

The remainder of the paper is as follows. Section 2 describes work related to con-

sistency analysis in modeling languages. A modeling example is used to describe

consistency problems in URN models in Section 3, while Section 4 highlights our

proposed consistency rules. This paper concludes in Section 5 with a summary and a

list of potential consistency issues we hope to address in the future.

2 Related Work

Consistency analysis in modeling aims to detect contradictions when multiple views

are used to specify different subsets of a model. Inconsistencies occur frequently if

these views are provided by different modelers, or when a language includes different

sub-notations. A good example is UML, where several challenges exist due to the

presence of 14 diagram types. For instance, messages used in sequence diagrams and

transition actions used in state machine diagrams must correspond to operations (and

their signatures) in their respective classes in class diagrams. There is even a work-

shop focusing on such issues [5]. Resolving consistency issues often involves adding,

deleting, or modifying model elements in one or many views to better align the latter

with each other.

Goal models have also been connected to other types of models, with consistency

challenges. Alves et al. [6] have investigated bi-directional mappings between Busi-

ness Process Model and Notation (BPMN) and i* models. Their mappings targeted

transformations (instead of checking), but these mappings were not defined in a way

amenable to automation. A similar informal and syntactic approach was explored by

Guizzardi and Reis for BPMN and Tropos models [7]. In their GoalBPM approach,

Koliadis and Ghose trace BPMN elements to KAOS goals through effect annotations

[8]. Sousa and Leite proposed to merge BPMN, i* and indicators into a single lan-

guage in their GPI approach, in order to simplify the alignment between goals and

processes. However, they do not suggest consistency or completeness rules.

Our work is inspired from these related contributions, but also targets automated

checking of inconsistencies in a standard multi-view language (URN) through user-

selectable rules formalized in OCL.

3 Consistency Issues in URN Models

Consider the illustrative example described in Fig. 1. In the GRL view shown on the

left, we have a Transportation System whose At Work goal is decomposed into two

options described as tasks: By Bus or By Bike. The Worker actor wants to improve her

health, and the first option hurts that softgoal whereas the second option helps it. The

top UCM map shown in Fig. 1 describes the process involved in the worker getting to

work. The choice of transportation mode is described using a dynamic stub

(Transport) and two options are available, TakeCar and TakeBus, captured as sub-

maps with one responsibility each (and plugged into that stub).

44

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674

Fig. 1. Sample model showing one GRL diagram and three UCM diagrams

URN Links of type Traces are used to capture explicit traceability information used

during consistency analysis, and links are visualized through outgoing (▶) and incom-

ing (◀) link triangles. In this example, the Worker actor in the GRL view traces to the

Worker component in the UCM view. In addition, the By Bus task in the GRL view

traces (incorrectly) to the TakeCar responsibility in the UCM view. The connecting

arrows were added for illustration but they are not part of the URN notation.

We can observe potential inconsistencies across these GRL and UCM views. The

GRL Transportation System should likely trace to the UCM System. The By Bike task

has no corresponding map or responsibility, which can raise several questions (is this

task spurious? Is a map or responsibility missing?). The By Bus task likely traces to

the incorrect responsibility (should be to TakeBus instead of TakeCar), but then the

TakeCar map might require a link from a new GRL task or be removed for consisten-

cy. Lastly, the Leave responsibility has no trace link, but maybe there is no reason to

link it either; not all fine-grained operationalizations need to be justified, just like not

all goals need to be operationalized (e.g., the color of the system shall be blue).

Given the current lack of support for consistency analysis in the URN standard,

these types of inconsistencies (and others) could easily be overlooked in more com-

plex models, leading to erroneous model analysis results. The resolution of such in-

consistencies (e.g., adding/removing/modifying a GRL/UCM model element or URN

Link, or tagging a model element as something that does not require traceability)

requires human judgement and is outside the scope of this work. However, consisten-

cy rules can still be defined formally in order to detect violations automatically.

4 Goal-Process Consistency Rules for URN Models

Consistency rules can be defined as constraints on a language’s metamodel. OCL is a

good choice in our context as URN has a unified metamodel covering both the GRL

and UCM views. From an implementation perspective, jUCMNav supports the defini-

45

Consistency Analysis for User Requirements Notation Models

tion, selection, and checking of OCL rules by modelers, and a library of predefined

OCL functions for extracting information from URN models is also provided [10].

Such mechanisms enable the checking of rules, e.g., in a language profile [11].

Our consistency rules exploit two modeler-provided information elements: URN

Links of type Traces from a GRL element to a UCM element (by convention), and

metadata (name=Traces, value=No) used to annotate model elements for which we do

not expect any consistency-related Traces link. Rules come in groups of multiple,

fine-grained OCL invariants in order to report violations with precise error messages.

The first rule (#1, below) addresses the consistency between GRL actors and UCM

components. Part #1a checks the existence of a Traces link sourced at the GRL actor

and part #1b checks that the target of such links is indeed a UCM component. These

invariants make use of OCL functions predefined in our library: invoking getMetada-

ta(n:String):String returns the value of the first attached metadata object whose

name is n, and getLinksToForType(t:String):Sequence(URNmodelElement) returns a

collection of target model elements found at the end of URN Links of type t.

context grl::Actor

inv URNconsAllActorsToComponents:
-- #1a: Each GRL actor must have a Traces link to a UCM component,

-- unless tagged with Traces=No

not(getMetadata('Traces')='No') implies
(getLinksToForType('Traces')->size() > 0)

inv URNconsActorsToComponentsOnly:
-- #1b: Traces links from a GRL actor must only be to a UCM *component*

not(getMetadata('Traces')='No') implies
(getLinksToForType('Traces')->
 forAll(me:urncore::URNmodelElement |

me.oclIsKindOf(urncore::Component)))

The above invariants check this rule from the actors’ perspective only. However, one

must also check the presence of links from the UCM components’ perspective (as

there could be components without incoming Traces links). Hence, another pair of

similar invariants is provided (#1c and #1d in Table 1). A violation of any of these

invariants reported by jUCMNav on a URN model will indicate which model element

is incorrect, and the description is returned as an error message. For the example in

Fig. 1, jUCMNav reports violations of invariant #1a on the GRL actor Transportation

System and of invariant #1c on the UCM component System.

The second rule in Table 1, composed of six invariants, checks the consistency be-

tween GRL intentional elements and UCM maps or responsibilities (in order to cover

different levels of granularity). For example, in Fig. 1, the GRL goal At Work could

have a Traces link to the top-level UCM map, and the Leave responsibility could be

tagged with a Traces=No metadata. Rule 3 is an alternative to Rule 2 where only

GRL tasks are used for consistency checking instead of any type of GRL intentional

element (assuming that covering tasks is enough in some modeling context). The

modeler would need to choose between Rule 2 and Rule 3 for the consistency analysis

as these rules are mutually exclusive.

46

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674

Table 1. Identifiers and descriptions of OCL consistency rules for URN models

ID Description

1a Each GRL actor must have a Traces link to a UCM component, unless tagged with

Traces=No

1b Traces links from a GRL actor must only be to a UCM *component*

1c Each UCM component must have a Traces link from a GRL actor, unless tagged with

Traces=No

1d Traces links to a UCM component must only be from a GRL *actor*

2a Each GRL intentional element must have a Traces link to a UCM map or responsibil-

ity, unless tagged with Traces=No

2b Traces links from a GRL intentional element must only be to a UCM *map or respon-

sibility*

2c Each UCM map must have a Traces link from a GRL intentional element, unless

tagged with Traces=No

2d Traces links to a UCM map must only be from a GRL *intentional element*

2e Each UCM responsibility must have a Traces link from a GRL intentional element,

unless tagged with Traces=No

2f Traces links to a UCM responsibility must only be from a GRL *intentional element*

3a Each GRL task must have a Traces link to a UCM map or responsibility, unless tagged

with Traces=No

3b Traces links from a GRL task must only be to a UCM *map or responsibility*

3c Each UCM map must have a Traces link from a GRL task, unless tagged with Trac-

es=No

3d Traces links to a UCM map must only be from a GRL *task*

3e Each UCM responsibility must have a Traces link from a GRL task, unless tagged

with Traces=No

3f Traces links to a UCM responsibility must only be from a GRL *task*

4c Each UCM component (or one of its parents) must have a Traces link from a GRL

actor, unless tagged with Traces=No

4d Traces links to a UCM component (or one of its parents) must only be from a GRL

actor

Rule 4 is a recursive version of Rule 1 where #4a=#1a and #4b=#1b. From a UCM

perspective, it suffices that the component or one of its containing components is the

target of a Traces link from a GRL actor for the rule to be satisfied. For example, if

component C2 is the target of a valid Traces link and C1 contains C2 and C2 contains

C3, then C2 and C3 would be consistent (no violation) whereas C1 would not. Other

such recursive rules, which minimize the need to manually create Traces URN links,

could also be considered (e.g., for a structure of maps with stub containing sub-maps).

5 Conclusions and Future Work

In this paper, using an example, we showed a preliminary set of consistency rules for

automatically checking common consistency properties across the goal and process

views in URN models. The 18 invariants in Table 1 have been implemented as user-

selectable OCL constraints in the jUCMNav tool, and tested for correctness. Other

such rules are currently under development and are expected to be released as a cata-

logue of validated consistency rules, possibly integrated to the URN standard.

47

Consistency Analysis for User Requirements Notation Models

This work raises many new research questions on how best to achieve sound goal-

process consistency in URN models while maximizing usability through automation

(as manually creating and checking URN links is much cumbersome). For example:

• Should there be different types of links connecting GRL and UCM elements?

• Can UCM variables (used in conditions and responsibilities) capturing the

satisfaction levels of GRL intentional elements be used as traceability links?

• What recursive rules exploiting containment structures are beneficial?

• Should different rules apply to different parts/elements of a URN model?

• Can natural language processing (NLP) or other approaches be used for cre-

ating (some) URN links automatically?

• How can jUCMNav’s interface be made more usable? E.g., when we create a

GRL actor, should a UCM component be created and linked automatically?

• In addition to the “syntactic” rules proposed in this paper, should semantic

rules and evolution rules (consistency across versions) be considered [5]?

An empirical study on the application of such rules would also help observe what

really helps or hurts in terms of consistency and overall quality of URN models.

Acknowledgments. OA and DX are supported by Discovery grants (of DA ad LL

respectively) from the Natural Science and Engineering Research Council of Canada.

OA is further supported by Interis Consulting/BDO, and AAA by a scholarship from

the Government of Libya.

References

1. International Telecommunication Union: Recommendation Z.151(10/12), User Require-

ments Notation (URN) – Language Definition. Geneva, Switzerland, 2012.

2. Amyot, D., Mussbacher, G.: User Requirements Notation: The First Ten Years, The Next

Ten Years. Journal of Software (JSW), Vol. 6, No. 5, 747–768, 2011.

3. Object Management Group: Object Constraint Language (OCL), Version 2.4, February

2014.

4. Amyot, D., Shamsaei, A., Kealey, J., Tremblay E., Miga, A., Mussbacher, G., Tawhid, R.,

Braun, E., Catwright, N.: Towards Advanced Goal Model Analysis with jUCMNav, in ER

Workshops 2012, Springer, pp. 201–210, 2012.

5. Torre, D., Labiche, Y., Genero, M., Elaasar, M., Das, T.K., Hoisl, B., Kowal, M.: WUCOR

2015: Post workshop report. ACM SIGSOFT SEN, 41(2): 34–37 (2016)

6. Alves, R., Silva, C., Castro, J.: A bi-directional mapping between i* and BPMN models in

the context of business process management. ER@BR 2013. CEUR-WS Vol-1005 (2013)

7. Guizzardi, R., Reis, A.N.: A Method to Align Goals and Business Processes. Conceptual

Modeling. LNCS 9381, Springer, 79–93 (2015)

8. Koliadis, G., Ghose, A.: Relating Business Process Models to Goal-Oriented Requirements

Models in KAOS. PKAW 2006. NCS 4303, Springer, 25–39 (2006)

9. Sousa, H.P., Leite, J.C.S.P: Modeling Organizational Alignment. Conceptual Modeling.

LNCS 8824, 407–414 (2014)

10. Amyot, D., Yan, J.B.: Flexible Verification of User-Defined Semantic Constraints in Mod-

elling Tools. CASCON 2008. ACM Press, 81–95 (2008)

11. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A Lightweight GRL Profile for i*

Modeling. RIGiM 2009, ER Workshops, LNCS 5833. Springer, 254–264 (2009)

48

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674

