
Representing Items as Word-Embedding Vectors and
Generating Recommendations by Measuring their Linear

Independence∗

Ludovico Boratto, Salvatore Carta, Gianni Fenu, and Roberto Saia
Dipartimento di Matematica e Informatica, Università di Cagliari

Via Ospedale 72, 09124 Cagliari - Italy
ludovico.boratto@acm.org, {salvatore, fenu, roberto.saia}@unica.it

ABSTRACT
In order to generate effective results, it is essential for a rec-
ommender system to model the information about the user
interests in a profile. Even though word embeddings (i.e.,
vector representations of textual descriptions) have proven
to be effective in many contexts, a content-based recom-
mendation approach that employs them is still less effective
than collaborative strategies (e.g., SVD). In order to over-
come this issue, we introduce a novel criterion to evaluate
the word-embedding representation of the items a user rated.
The proposed approach defines a vector space in which the
similarity between an unevaluated item and those in a user
profile is measured in terms of linear independence. Ex-
periments show its effectiveness to perform a better rank-
ing of the items, w.r.t. collaborative filtering, both when
compared to a latent-factor-based approach (SVD) and to a
classic neighborhood user-based system.

CCS Concepts
•Information systems→Data mining; Recommender
systems; Learning to rank;

Keywords
Semantic Analysis; Word Embeddings; Algorithms; Metrics.

1. INTRODUCTION
Recommender systems are essential for e-commerce com-

panies, to filter the huge amounts of items they can provide
and improve the quality and efficiency of the sales crite-
ria [3]. In order to perform this task, these systems need to
define a set of profiles that model the preferences of their

∗This work is partially funded by Regione Sardegna
under project NOMAD (Next generation Open Mobile
Apps Development), through PIA - Pacchetti Integrati di
Agevolazione “Industria Artigianato e Servizi” (annualità
2013).

RecSys 2016. September 15–19, 2016, Boston, MA, USA.
Copyright held by the author(s).

customers. In this context, the collaborative techniques,
which represent a user with the ratings given to the items
she evaluated, are usually the most effective. Even though
semantic technologies are moving at a very rapid pace and
state-of-the-art solutions, such as deep learning algorithms
able to extract word embeddings [1] from a text corpus, have
been successfully employed in numerous information filter-
ing and retrieval tasks, at the moment collaborative filtering
approaches continue to be more accurate at generating rec-
ommendations [2]. The extraction of the word embeddings
from a corpus is made possible thanks to several state-of-
the-art tools, which create a vector representation of each
word (Google’s word2vec1) or document (a word2vec exten-
sion, usually known as doc2vec).

A user profile represented by a unique vector of features
allows a system to perform quick comparisons, e.g., in a
content-based system, it can be easily compared to the vec-
tor that represents an item with a simple metric, like the co-
sine similarity. The idea behind this paper is to represent a
user profile as a matrix of word-embeddings, where each row
is represented by an item a user positively evaluated, and to
define a metric able to evaluate the correlation between an
item not rated by a user and those in her matrix-based user
profile, in terms of linear independence.

We observe that if the vector representation of an unevalu-
ated item is linearly dependent to the items in a user profile
that have been positively evaluated, their features match,
thus it is similar to the user preferences. This leads to a
higher accuracy of a recommender system w.r.t. collabora-
tive approaches.

2. APPROACH
Here, we present the steps our approach performs:
Item Vectorization. Given a set I of items, we first

define and train a model by using the doc2vec neural net
(by using as source the textual description of the items in
I). The result is the vector representation of the items in
I, where the cardinality of each vector (item) depends on
the number L of features used in the doc2vec vectorization
process. Given a user, the output of this step will be a
matrix that contains the embeddings of the items positively
evaluated by her (denoted as Iu), plus an empty row to
employ during the filtering process to evaluate the items
not yet evaluated by the user.

Linear Independence Rate. To evaluate the similarity
between the items in the matrix-based user profile and an

1http://deeplearning4j.org/word2vec

unevaluated one, we define the Linear Independence Rate
(LIR) coefficient. It is the average of the determinants of
all square sub-matrices, defined by decomposing the user
profile matrix in square sub-matrices of size |Iu|× |Iu| (with
|Iu| ≤ L, otherwise we have only a matrix of size L×L). We
calculate the LIR value by moving on the entire user pro-
file matrix, extracting the determinant of each sub-matrix,
without overlaps. We can note that the maximum size of the
square sub-matrices is the cardinality of the vectors, i.e., the
L parameter used to build the doc2vec model. Through this
compositional process, we evaluate the LIR of an item by
placing its vector representation as last element of the user
profile. We consider closer to the preferences of a user the
items with a LIR value as close as possible to zero.

Ranking Algorithm. The Algorithm 1 takes as input
the items I, a user u, the items Iu she evaluated, and the
number of features L in the vectors created by doc2vec (i.e.,
the layerSize parameter). It returns as output a list R of the
items not evaluated by the user u (ranked by LIR value).

Algorithm 1 Items evaluation and ranking

Input: I=Set of items, u=User, Iu=Items of u, L=layerSize
Output: R = List of ranked items
1: procedure GetRankedItems(I,u,Iu,L)
2: if |Iu| > L then Iu=GetLastLItems(Iu, L)
3: end if
4: V =Doc2VecVectorization(I)
5: M=DefineUserProfileMatrix(V ,Iu)
6: M=AddEmptyVectorAsLastRow(M);
7: for each i in I do
8: if i NOT IN Iu then
9: v=GetItemVector(V, i)
10: M=FillLastMatrixRow(M, v)
11: LIR=CalculateLIR(M)
12: R← (i, LIR)
13: end if
14: end for
15: Return SortItemsByDescLIR(|R|)
16: end procedure

It should be noted that our approach is scalable by em-
ploying distributed computing models (e.g., MapReduce).
Indeed, the computation of the LIR metric for each un-
evaluated item can be distributed over different machines.

3. EVALUATION
We compared our approach with two collaborative filter-

ing approaches: CF , which is based on a classic neighbor-
hood model, and SV D, based on the latent factor model.
The experiments have been performed by using a dataset
that represents a standard benchmark for recommender sys-
tems, i.e., Movielens 1M, composed by 6,040 users, 3,900
items, and 1,000,209 ratings.

The criterion adopted for obtaining the training and the
test sets was the K-fold cross validation with K = 3, and
the independent-samples two-tailed Student’s t-tests. The
adopted metric is the Mean Reciprocal Rank (MRR), a sta-
tistical measure able to evaluate the ranking generated for
a set of elements that belong to a certain domain.

The first experiment evaluates the metric capability to
measure the similarity between a user profile and an item,
in terms of linear independence (Figure 1: Top). On the
basis of our approach, we rank all the items in decreasing
order, by verifying that almost all of those in the test set
have been placed in the top positions (i.e., 1÷ 20), proving
the LIR capability to effectively rank the items.

62.02%

Range 01 ÷ 20

26.68%

Range 21 ÷ 40

09.67%

Range 41 ÷ 60

01.63%
Range 61 ÷ 80

(75) (150) (225) (300)

0.05
0.10
0.15

Tested items (×1000)

M
R
R

CF

SVD

LIR

Figure 1: (Top) Linear similarity evaluation. (Bottom)

Ranking accuracy evaluation

The second experiment evaluates the metric capability to
infer the future choices of the users (Figure 1: Bottom), by
comparing the rank assigned to the items in the test set by
using the LIR metric, with those assigned to the same items
by the other state-of-the-art approaches taken into account.

The t-tests highlighted a statistical difference between the
results (p < 0.05).

4. DISCUSSION AND CONCLUSIONS
The experimental results show the effectiveness of the

compositional approach used by our LIR metric, as well
as its capability to overcome the canonical state-of-the-art
metrics, in terms of modeling of the user preferences. In-
deed, we have a strong improvement in the process of rating
of the unevaluated items, and this means that our metric as-
signs an higher score (w.r.t. the state-of-the-art approaches
to which we compared) to the items positively evaluated by
a user. The use of the LIR metric can be also extended to
other contexts that do not use word embeddings, e.g., those
based on a canonical term-document matrix.

Future work. We will consider our metric to evaluate
the items negatively evaluated by the users, in order to ob-
tain additional information in terms of unpreferred items,
exploiting it to improve the recommendations accuracy, e.g.,
by verifying the preferences collision (i.e., very similar items
rated both positively and negatively by a user).

5. REFERENCES
[1] R. Fu, J. Guo, B. Qin, W. Che, H. Wang, and T. Liu.

Learning semantic hierarchies via word embeddings. In
ACL (1), pages 1199–1209, 2014.

[2] C. Musto, G. Semeraro, M. de Gemmis, and P. Lops.
Learning word embeddings from wikipedia for
content-based recommender systems. In Advances in
Information Retrieval, pages 729–734. Springer, 2016.

[3] S. Sivapalan, A. Sadeghian, H. Rahnama, and A. M.
Madni. Recommender systems in e-commerce. In World
Automation Congress (WAC), 2014, pages 179–184.
IEEE, 2014.

