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Abstract. An increasing number of research and industrial initiatives
have focused on publishing Linked Open Data, but little attention has
been provided to help consumers to better understand existing data sets.
In this paper we discuss how an ontology-driven data abstraction model
supports the extraction and the representation of summaries of linked
data sets. The proposed summarization model is the backbone of the
ABSTAT framework, that aims at helping users understanding big and
complex linked data sets. Our framework is evaluated by showing that
it is capable of unveiling information that is not explicitly represented
in underspecified ontologies and that is valuable to users, e.g., helping
them in the formulation of SPARQL queries.
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1 Introduction

As of April 2014, 1014 data sets have been published in the Linked Open Data
cloud, a number that is constantly increasing1. However, understanding the con-
tent of large and complex data sets is very challenging for users [10, 21, 6, 18, 14].
If a user wants to evaluate if a data set is useful for her or to formulate some
queries, she needs first to understand the content of the data set and its orga-
nization, by finding answers to questions such as: what types of resources are
described in the data set? What properties are used to describe the resources?
What types of resources are linked by a certain property and how frequently?
How many resources have a certain type and how frequent is the use of a given
property? Remarkably, difficulties in answering those questions result in low
adoption of many valuable but unknown data sets [16].

Linked data sets make use of ontologies to describe the semantics of their
data. Ontologies may be large and underspecified. At the time of writing DB-
pedia uses 685 concepts and 2795 properties while the domain and range is not
specified for 259 and 187 properties respectively.

Finally, the ontology does not tell how frequently a certain modelling pattern
occurs in a data set. The above questions can be answered with explorative

1 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/



queries, but at the price of a significant server overload for data publishers and
high response time for data consumers.

ABSTAT is an ontology-driven linked data summarization model proposed to
mitigate the data set understanding problem. In our view, a summary is aimed
at providing a compact but complete representation of a data set. With complete
representation we refer to the fact that every relation between concepts that is
not in the summary can be inferred. One distinguishing feature of ABSTAT is to
adopt a minimalization mechanism based on minimal type patterns. A minimal
type pattern is a triple (C,P,D) that represents the occurrences of assertions
<a,P,b> in RDF data, such that C is a minimal type of the subject a and D
is a minimal type of the object b. Minimalization is based on a subtype graph
introduced to represent the data ontology. By considering patterns that are based
on minimal types we are able to exclude several redundant patterns from the
summary. The ABSTAT2 framework supports users to query (via SPARQL),
to search and to navigate the summaries through web interfaces. Other related
work on data or ontology summarization have focused on complementary aspects
of the summarization, such as the identification of salient subsets of knowledge
bases using different criteria [21, 6, 18, 14], e.g., connectivity. Other approaches
do not represent connections between instance types as our model does [7, 1, 8].

In this paper we make the following contributions: (i) we describe in detail the
summarization model, focusing on the minimalization approach; (ii) we describe
the summary extraction workflow; (iii) we provide an experimental evaluation of
our approach from two different perspectives, evaluating the compactness and
the informativeness of the summaries.

The paper is organized as follows. The summarization model is presented in
Section 2. The implementation of the model in ABSTAT is given in Section 3.
Experimental results are presented in Section 4. Related work is discussed in
Section 5 while conclusions end the paper in Section 6.

2 Summarization Model

We define a data set as a couple ∆ = (T ,A), where T is a set of terminological
axioms, andA is a set of assertions. The domain vocabulary of a data set contains
a set NC of types, where with type we refer to either a named class or a datatype,
a set NP of named properties, a set of named individuals (resource identifiers)
NI and a set of literals L. In this paper we use symbols like C, C ′, ..., and D,
D′, ..., to denote types, symbols P , Q to denote properties, and symbols a,b to
denote named individuals or literals.

Assertions in A are of two kinds: typing assertions of form C(a), and rela-
tional assertions of form P (a, b), where a is a named individual and b is either
a named individual or a literal. We denote the sets of typing and relational as-
sertions by AC and AP respectively. Assertions can be extracted directly from
RDF data (even in absence of an input terminology). Typing assertions occur in

2 http://abstat.disco.unimib.it



a data set as RDF triples < x, rdf:type, C > where x and C are URIs, or can be
derived from triples < x,P, yˆˆC > where y is a literal (in this case y is a typed
literal), with C being its datatype. Without loss of generality, we say that x is
an instance of a type C, denoted by C(x), either x is a named individual or x
is a typed literal. Every resource identifier that has no type is considered to be
of type owl:Thing and every literal that has no type is considered to be of type
rdfs:Literal. Observe that a literal occurring in a triple can have at most one
type and at most one type assertion can be extracted for each triple. Conversely,
an instance can be the subject of several typing assertions. A relational assertion
P (x, y) is any triple < x,P, y > such that P 6= Q∗, where Q∗ is either rdf:type,
or one of the properties used to model a terminology (e.g. rdfs:subClassOf).

Abstract Knowledge Patterns (AKPs) are abstract representations of Knowl-
edge Patterns, i.e., constraints over a piece of domain knowledge defined by ax-
ioms of a logical language, in the vein of Ontology Design Patterns [17]. For sake
of clarity, we will use the term pattern to refer to an AKP in the rest of the
paper. A pattern is a triple (C,P,D) such that C and D are types and P is a
property. Intuitively, an AKP states that there are instances of type C that are
linked to instances of a type D by a property P . In ABSTAT we represent a set
of AKP occurring in the data set, which profiles the usage of the terminology.
However, instead of representing every AKP occurring in the data set, ABSTAT
summaries include only a base of minimal type patterns, i.e., a subset of the
patterns such that every other pattern can be derived using a subtype graph. In
the following we better define these concepts and the ABSTAT principles.

Pattern Occurrence. A pattern (C,P,D) occurs in a set of assertions A iff
there exist some instances x and y such that {C(x), D(y), P (x, y)} ⊆ A. Patterns
will be also denoted by the symbol π.

For data sets that publish the transitive closure of type inference (e.g., DB-
pedia), the set of all patterns occurring in an assertion set may be very large
and include several redundant patterns. To reduce the number of patterns we
use the observation that many patterns can be derived from other patterns if we
use a Subtype Graph that represents types and their subtypes.

Subtype Graph. A subtype graph is a graph G = (NC ,�), where NC is a
set of type names (either concept or datatype names) and � is a relation over
NC .

We always include two type names in NC , namely owl:Thing and
rdfs:Literal, such that every concept is subtype of owl:Thing and every
datatype is subtype of rdfs:Literal. One type can be subtype of none, one
or more than one type.

Minimal Type Pattern. A pattern (C,P,D) is a minimal type pattern for
a relational assertion P (a, b) ∈ A and a terminology graph G iff (C,P,D) occurs
in A and there does not exist a type C ′ such that C ′(a) ∈ A and C ′ ≺G C or a
type D′ such that D′(b) ∈ A and D′ ≺G D.

Minimal Type Pattern Base. A minimal type pattern base for a set of
assertions A under a subtype graph G is a set of patterns Π̂A,G such that
π ∈ Π̂A,G iff π is a minimal type pattern for some relation assertion in A.
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Fig. 1. A small graph representing a data set and the corresponding patterns.

Observe that different minimal type patterns (C,P,D) can be defined for
an assertion P (a, b) if a and/or b have more than one minimal type. How-
ever, the minimal type pattern base excludes many patterns that can be in-
ferred following the subtype relations and that are not minimal type for any
assertion. In the graph represented in Figure 1 considering the assertion set
A = {P (a, b), C(a), A(a), F (b), D(b), A(b)}, there are six patterns occurring in
A, i.e., (C,P,D), (C,P, F ), (C,P,A), (A,P,D), (A,P, F ), (A,P,A). The mini-
mal type pattern base for the data set includes the patterns (E,Q,D), (E,R, T ),
(C,Q,D), (C,R, T ) and (C,P,D) since E and C are minimal types of the in-
stance c, while excluding patterns like (B,Q,D) or even (A,Q,A) since not B
nor A are minimal types of any instance.

Data Summary. A summary of a data set ∆ = (A, T ) is a triple ΣA,T =

(G,Π, S) such that: G is Subtype Graph, Π̂A,G is a Minimal Type Pattern Base
for A under G, and S is a set of statistics about the elements of G and Π.

Statistics describe the occurrences of types, properties and patterns. They
show how many instances have C as minimal type, how many relational asser-
tions use a property P and how many instances that have C as minimal type
are linked to instances that have D as minimal type by a property P .

3 Summary Extraction

Our summarization process, depicted in Figure 2, takes in input an assertion set
A and a terminology T and produces a summary ΣA,T . First, the typing asser-
tion set AC is isolated from the relational assertion set AP , while the subtype
graph G is extracted from T . Then, AC is processed and the set of minimal
types for each named individual is computed. Finally, AP is processed in order
to compute the minimal type patterns that will form the minimal pattern base
Π̂A,G. During each phase we keep track of the occurrence of types, properties
and patterns, which will be included as statistics in the summary.

Summary Extraction. The subtype graph G is extracted by traversing all
the subproperty and subtype relations in T . The subtype graph will be further



Fig. 2. The summarization workflow.

enriched with types from external ontologies asserted in AC while we compute
minimal types of named individuals (i.e., external types).

Given a named individual x, we compute the set Mx of minimal types with
respect to G. We first select all the typing assertions C(x) ∈ AC and form
the set AC

x of typing assertions about x. We then iteratively process AC
x . At

each iteration we select a type C and remove from Mx all the supertypes of C
according to G. Then, if Mx does not contain any C ′ such that C ′ ≺G C, we
add C to Mx. Notice that one preliminary step of the algorithm is to include
C in G if it was not included during the subtype graph extraction phase. If a
type C is not defined in the input terminology, is automatically considered as a
minimal type for the individual x. This approach allows us to handle the types
of individuals that are not included in the original terminology.

For each relational assertion P (x, y) ∈ AP , we get the minimal types sets
Mx and My. For all C,D ∈ Mx,My we add a pattern (C,P,D) to the minimal
type pattern base. If y is a literal value we consider its explicit type if present,
rdfs:Literal otherwise.

Summary Storage and Presentation. Every summary is stored, indexed
and made accessible through two user interfaces, i.e., ABSTATBrowse and AB-
STATSearch, and a SPARQL endpoint. SPARQL based access and ABSTAT-
Browse3 are described in our previous demo paper [11]. ABSTATSearch4 is a
novel interface that implements a full-text search functionality over a set of
summaries. Types, properties and patterns are represented by means of their
local names (e.g., Person, birthPlace or Person birthPlace Country), con-
veniently tokenized, stemmed and indexed, and retrieved using Lucene Score as
ranking model.

3 http://abstat.disco.unimib.it and http://abstat.disco.unimib.it/sparql
4 http://abstat.disco.unimib.it/search



Table 1. Data sets and summaries statistics.

Relational Typing Assertions Types
(Ext.)

Properties
(Ext.)

Patterns

db2014-core ∼ 40.5M ∼ 29.7M ∼ 70.1M 869 (85) 1439 (15) 171340
db3.9-infobx ∼ 96.3M ∼ 19.7M ∼ 116.4M 821 (58) 62572 (14) 732418
lb ∼ 180.1M ∼ 39.6M ∼ 221.7M 21 (9) 33 (0) 161

4 Experimental Evaluation

We evaluate our summaries from different, orthogonal perspectives. We measure
the compactness of ABSTAT summaries and compare the number of their pat-
terns to the number of patterns extracted by Loupe [10], an approach similar to
ours that does not use minimalization. The informativeness of our summaries
are evaluated with two experiments. In the first experiment we show that our
summaries provide useful insights about the semantics of properties, based on
their usage within a data set. In the second experiment, we conduct a prelimi-
nary user study to evaluate if the exploration of the summaries can help users
in query formulation tasks. In our evaluation we use the summaries extracted
from three linked data sets: DBpedia Core 2014 (db2014-core)5, DBpedia 3.9
(db3.9-infobox)6 and Linked Brainz (lb). db2014-core and db3.9-infobox
data sets are based on the DBpedia ontology while the lb data set is based on the
Music Ontology. DBpedia and LinkedBrainz have complementary features and
contain real and large data. For this reason they have been used, for example,
in the evaluation of QA systems [9].

4.1 Compactness

Table 1 provides a quantitative overview of data sets and their summaries. To
evaluate compactness of a summary we measure the reduction rate, defined as
the ratio between the number of patterns in a summary and the number of
assertions from which the summary has been extracted.

Our model achieves a reduction rate of ∼0.002 for db2014-core, ∼0.006
for db3.9-infobox, and ∼6.72 ×10−7 for lb. Comparing the reduction rate
obtained by our model with the one obtained by Loupe (∼0.01 for DBpedia and
∼7.1 ×10−7 for Linked Brainz) we observe that the summaries computed by
our model are more compact, as we only include minimal type patterns. Loupe
instead, does not apply any minimalization technique thus its summaries are less
compact. The effect of minimalization is more observable on DBpedia data sets,
since the DBpedia terminology specifies a richer subtype graph and has more
typing assertions. We observe also that 85 external types were added to the
db2014-core subtype graph and 58 to db3.9-infobox subtype graph during
the minimal types computation phase as they were not part of the original
terminology, and thus are considered by default as minimal types.

5 The DBpedia 2014 version with mapping based property only
6 The DBpedia Core 3.9 version plus automatically extracted properties



Table 2. Total number of properties with unspecified domain and range in each data
set.

Domain (%) Range (%) Domain-Range (%)

db2014-core 259 (∼18%) 187 (∼13%) 48 (∼3.3%)
db3.9-infobox 61368 (∼98%) 61309 (∼98%) 61161 (∼97%)
lb 13 (∼39%) 15 (∼45%) 13 (∼39%)

Fig. 3. Distribution of the number of minimal types from the domain and range ex-
tracted for not specified properties of the db2014-core data set.

4.2 Informativeness

Insights about the semantics of the properties. Our summaries convey valuable
information on the semantics of properties for which the terminology does not
provide any domain and/or range restrictions. Table 2 provides an overview
of the total number of unspecified properties from the data sets. For example,
around 18% of properties from db2014-core data set have no domain restric-
tions while 13% have no range restrictions. Observe that this data set is the most
curated subset of DBpedia as it includes only triples generated by user validated
mappings to Wikipedia templates. In contrast for db3.9-infobox data set which
includes also triples generated by information extraction algorithms, most of the
properties (i.e., the ones from the dbpepdia.org/property namespace) are not
specified within the terminology.

In general, underspecification may be the result of precise modelling choices,
e.g., the property dc:date from the lb data set. This property is intentionally
not specified in order to favor its reuse, being the Dublin Core Elements (i.e.,
dc) a general purpose vocabulary. Another example is the dbo:timeInSpace

property from the db2014-core data set, whose domain is not specified in
the corresponding terminology. However, this property is used in a specific way
as demonstrated by patterns (dbo:Astronaut, dbo:timeInSpace, xsd:double)
and (dbo:SpaceShuttle dbo:timeInSpace, xsd:double). Gaining such under-
standing of the semantics of the dbo:timeInSpace property by looking only at
the terminology axioms is not possible.



We can push our analysis further to a more fine grained level. Figure 3
provides an overview of the number of different minimal types that constitute
the domain and range of unspecified properties extracted from the summary
of the db2014-core data set. The left part of the plot shows those properties
whose semantics is less “clear”, in the sense that their domain and range cover
a higher number of different minimal types e.g., the dbo:type property. Sur-
prisingly, the dbo:religion property is among them: its semantics is not as
clear as one might think, as its range covers 54 disparate minimal types, such as
dbo:Organization, dbo:Sport or dbo:EthnicGroup. Conversely, the property
dbo:variantOf, whose semantics is intuitively harder to guess, is used within
the data set with a very specific meaning, as its domain and range covers only
2 minimal types: dbo:Automobile and dbo:Colour.

Small-scale user study. Formulating SPARQL queries is a task that requires
prior knowledge about the data set. ABSTAT could support users that lack
such knowledge by providing valuable information about the content of the data
set. We designed a user study based on the assignment of cognitive tasks re-
lated to query formulation. We selected a set of queries from the Questions and
Answering in Linked Open Data benchmark7 [19] to the db3.9-infobox data
set. The selected queries were taken from logs of the PowerAqua QA system
and are believed to be representative of realistic information needs [9], although
we cannot guarantee that they cover every possible information need. We pro-
vided the participants the query in natural language and a “template” of the
corresponding SPARQL query, with spaces intentionally left blank for properties
and/or concepts. For example, given the natural language specification Give me
all people that were born in Vienna and died in Berlin, we asked participants to
fill in the blank spaces:
SELECT DISTINCT ?uri WHERE { ?uri ... <Vienna> . ?uri ... <Berlin> . }
We selected five queries of increasing length, defined in terms of the number of
triple patterns within the WHERE clause; one query of length one, two of length
two and two of length three. Intuitively, the higher the query length, the more
difficult it is to be completed. We could use a limited number of queries because
the tasks are time-consuming and fatigue-bias should be reduced [13]. Overall
20 participants with no prior knowledge about the ABSTAT framework were
selected and split into 2 groups: abstat and control. We profiled all the partic-
ipants in terms of knowledge about SPARQL, data modelling, DBpedia dataset
and ontology, so as to create two homogeneous groups. We trained for about 20
minutes on how to use ABSTAT only the participants from the first group. Both
groups execute SPARQL queries against the db3.9-infobox data set through
the same interface and were asked to submit the results they considered cor-
rect for each query. We measured the time spent to complete each query and
the correcteness of the answers. The correcteness of the answers is calculated as
the ratio between the number of correct answers to the given query agains the
total number of answers. Table 3 provides the results of the performance of the

7 http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/



Table 3. Results of the user study.

Group Avg. Completion Time (s) Accuracy

query 1 - How many employees does Google have? - length 1

abstat 358.9 0.9
control 380.6 0.8

query 2 - Give me all people that were born in Vienna and died in Berlin - length 2

abstat 356.3 1
control 346.9 0.8

query 3 - Which professional surfers were born in Australia? - length 2

abstat 476.6 0.6
control 234.24 0.7

query 4 - In which films directed by Gary Marshall was Julia Roberts starring? - length 3

abstat 333.4 0.9
control 445.6 0.9

query 5 - Give me all books by William Goldman with more than 300 pages - length 3

abstat 233.4 1
control 569.8 0.7

users on the query completion task8. The time needed to perform the 5 queries
from all partecipiants in average is 38.6m, while the minimum and the maximum
time is 18.4m and 59.2m respectively. The independent t-test, showed that the
time needed to correctly answer Q5, the most difficult query, was statistically
significant for two groups. There was a significant effect between two groups,
t(16) = 10.32, p < .005, with mean time for answering correctly to Q5 being
significantly higher (+336s) for the control group than for abstat group. Using
5 queries is coherent with other related work which suggest that the user study
would have 20-60 participants, who are given 10-30 minutes of training, followed
by all participants doing the same 2-20 tasks, during a 1-3 hour session [13].

Observe that the two used strategies to answer the queries by participants
from the control group were: to directly access the public web page describ-
ing the DBpedia named individuals mentioned in the query and very few of
them submitted explorative SPARQL queries to the endpoint. Most of the
users searched on Google for some entity in the query, then consulted DBpe-
dia web pages to find the correct answer. DBpedia is arguably the best search-
able dataset, which is why this explorative approach was successful for relatively
simple queries. However, this explorative approach does not work with other
non-indexed datasets (e.g., LinkedBrainz) and for complex queries. Instead, par-
ticipants of the abstat group took advantage of the summary, obtaining huge
benefits in terms of average completion time, accuracy, or both. Moreover, they
achieved increasing accuracy over queries at increasing difficulty, still performing
the tasks faster. We interpret the latter trend as a classical cognitive pattern,
as the participants became more familiar with ABSTATBrowse and ABSTAT-

8 The raw data can be found at http://abstat.disco.unimib.it/downloads/

user-study



Search web interfaces. The noticeable exception is query 3. In particular, par-
ticipants from the abstat group completed the query in about twice the time
of participants from control group. This is due to the fact that the individual
Surfing (which is used as object of the property dbo:occupation) is classified
with no type other than owl:Thing. As a consequence, participants from the
abstat group went trough a more time consuming trial and error process in
order to guess the right type and property. Participants from the abstat group
finally came to the right answer, but after a longer time. This issue might be
solved by applying state-of-the-art approaches for type inference on source RDF
data [12] and suggest possible improvements of ABSTAT for example including
values for concepts that are defined by closed and relatively small instance sets.

5 Related Work

We compare our work to approaches explicitly proposed to summarize Linked
Data and ontologies, and to extract statistics about the data set.

A first body of work has focused on summarization models aimed at iden-
tifying subsets of data sets or ontologies that are considered to be more rele-
vant. Authors in [21] rank the axioms of an ontology based on their salience to
present to the user a view about the ontology. RDF Digest [18] identifies the
most salient subset of a knowledge base including the distribution of instances
in order to efficiently create summaries. Differently from these approaches, ours
aims at providing a complete summary with respect to the data set.

A second body of work has focused on approaches to describe linked data sets
by reporting statistics about the usage of the vocabulary in the data. The most
similar approach to ABSTAT is Loupe [10], a framework to summarize and in-
spect Linked Data sets. Loupe extracts types, properties and namespaces, along
with a rich set of statistics. Similarly to ABSTAT, Loupe offers a triple inspec-
tion functionality, which provides information about triple patterns that appear
in the data set and their frequency. Triple patterns have the form <subjectType,
property, objectType> and are equivalent to our patterns. However, Loupe does
not apply any mimimalization technique: as shown in Section 4.1, summaries
computed by our model are significatively more compact.

In [2], authors consider vocabulary usage in the summarization process of
an RDF graph and use information similar to patterns. A similar approach is
also used in MashQL [4], a system proposed to query graph-based data (e.g.,
RDF) without prior knowledge about the structure of a data set. Our model
excludes several redundant patterns from the summary through minimalization,
thus producing more compact summaries. Knowledge pattern extraction from
RDF data is also discussed in [15], but in the context of domain specific experi-
ments and not with the purpose of defining a general linked data summarization
framework. Our summarization model can be applied to any data set that uses
a reference ontology and focuses on the representation of the summary.

Other approaches proposed to describe data sets do not extract connections
between types but provide several statistics. SchemeEx extracts interesting the-



oretic measures for large data sets, by considering the co-occurrence of types and
properties [7]. A data analysis approach on RDF data based on an warehouse-
style analytic is proposed in [3]. This approach focuses on the efficiency of pro-
cessing analytical queries which poses additional challenges due to their special
characteristics such as complexity, evaluated on typically very large data sets,
and long runtime. However, this approach differently from ours requires the de-
sign of a data warehouse specially for a graph-structured RDF data. Linked
Open Vocabularies9, RDFStats [8] and LODStats [1] provide several statistics
about the usage of vocabularies, types and properties but they do not represent
the connections between types.

The approach in [20] induces a schema from data and their axioms represent
stronger patterns compared to the patterns extracted by our approach. ABSTAT
aims to represent every possible connections existing among types while EL
axioms aims to mine stronger constraints.

The authors in [5] have a goal even more different than ours. They provide
lossless compression of RDF data using inference obtaining thus a reduction rate
of 0.5 in best cases. Our approach loses information about instances because aims
at representing schema-level patterns, but achieves a reduction rate of 0.002.

6 Conclusion and Future Work

Getting an understanding of the shape and nature of the data from large Linked
Data sets is a complex and a challenging task. In this paper, we proposed a
minimalization-based summarization model to support data set understanding.
Based on the experimentation we show that our summarization framework is able
to provide both compact and informative summaries for a given data set. We
showed that using ABSTAT framework the summaries are more compact than
the ones generated from other models and they also help the user to gain insights
about the semantics of underspecified properties in the ontology. The results
of our preliminary experiment showed that ABSTAT help users formulating
SPARQL queries both in terms of time and accuracy.

We plan to run the experiment in large scale, thus including more users with
different background characteristics in order to analyse in details which is the
target group of users for which ABSTAT is more useful. Several are the future
research directions. We plan to complement our coverage-oriented approach with
relevance-oriented summarization methods based on connectivity analysis. An-
other interesting direction was highlighted by our user study, that is the inference
of specific types for untyped instances found in the data set. We are also plan-
ning to consider the inheritance of properties to produce even more compact
summaries. Finally, we envision a complete analysis of the most important data
set available in the LOD cloud.

9 http://lov.okfn.org/
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8. A. Langegger and W. Wöß. RDFStats - An Extensible RDF Statistics Generator
and Library. In DEXA, 2009.

9. V. Lopez, C. Unger, P. Cimiano, and E. Motta. Evaluating question answering
over linked data. Web Semantics: Science, Services and Agents on the World Wide
Web, 21:3–13, 2013.

10. N. Mihindukulasooriya, M. Poveda Villalon, R. Garcia-Castro, and A. Gomez-
Perez. Loupe - An Online Tool for Inspecting Datasets in the Linked Data Cloud.
In ISWC Posters & Demonstrations, 2015.

11. M. Palmonari, A. Rula, R. Porrini, A. Maurino, B. Spahiu, and V. Ferme. AB-
STAT: Linked Data Summaries with ABstraction and STATistics. In ESWC
Posters & Demonstrations, 2015.

12. H. Paulheim and C. Bizer. Type Inference on Noisy RDF Data. In ISWC, 2013.
13. A. Perer and B. Shneiderman. Integrating statistics and visualization: case studies

of gaining clarity during exploratory data analysis. In Proceedings of the SIGCHI
conference o Human Factors in computing systems, pages 265–274. ACM, 2008.

14. S. Peroni, E. Motta, and M. d’Aquin. Identifying Key Concepts in an Ontology,
through the Integration of Cognitive Principles with Statistical and Topological
Measures. In ASWC, 2008.

15. V. Presutti, L. Aroyo, A. Adamou, B. A. C. Schopman, A. Gangemi, and
G. Schreiber. Extracting Core Knowledge from Linked Data. In COLD2011, 2011.

16. M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of the Linked Data Best
Practices in Different Topical Domains. In ISWC, 2014.

17. S. Staab and R. Studer. Handbook on ontologies. Springer Science & Business
Media, 2010.

18. G. Troullinou, H. Kondylakis, E. Daskalaki, and D. Plexousakis. RDF Digest:
Efficient Summarization of RDF/S KBs. In ESWC, 2015.

19. C. Unger, C. Forascu, V. Lopez, A. N. Ngomo, E. Cabrio, P. Cimiano, and S. Wal-
ter. Question Answering over Linked Data (QALD-4). In CLEF, 2014.

20. J. Völker and M. Niepert. Statistical schema induction. In The Semantic Web:
Research and Applications, pages 124–138. Springer, 2011.

21. X. Zhang, G. Cheng, and Y. Qu. Ontology summarization based on rdf sentence
graph. In WWW, 2007.


