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Abstract. In this paper, analysis of k-out-of-n Multi-State Systems (MSSs) is 
considered. This type of systems consists of n components, and it can be in state 
j if and only if at least k components are in state j or greater. Investigation of 
such systems has been considered in several works. However, most of them 
have dealt only with an efficient computation of several global characteristics, 
such as system state probability or system availability. In this paper, we deal 
with importance analysis for such systems. Particularly, we focus on two com-
monly used importance measures – structural importance and Birnbaum’s im-
portance. Using logical differential calculus, we propose an efficient way of 
how to calculate these measures for a k-out-of-n MSS. The obtained results are 
then used to analyze an oil supply system. 
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1 Introduction 

Reliability has been considered as an important characteristic of many systems [1], 
[2], [3], [4]. Most of the systems, whose reliability has to be investigated, are com-
posed of more than one element (component) and, therefore, one of the principal tasks 
of reliability analysis is investigation of influence of individual system components on 
the proper work of the system [4]. Such investigation requires creation of a mathe-
matical model of the system. As a rule, two approaches are used in reliability analysis. 
The first one is based on the assumption that the system and all its components (sys-
tem elements that are assumed to be indivisible into smaller parts) can be in one of 
only two possible states – functioning (represented by number 1) and failed (pre-
sented as number 0). These systems are known as Binary-State Systems (BSSs) [1], 
[4]. Models based on this approach are suitable for the analysis of consequences of 
system failure, but they are not very appropriate for the investigation of processes that 
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result in system failure. For this purpose, the approach based on the idea that the sys-
tem and all its components can be in one of more than two states is more suitable. In 
this case, we say about Multi-State Systems (MSSs) [2], [3], [4]. 

One of the current issues of reliability engineering is evaluation of complex sys-
tems. Such systems are composed of many components with very various natures [5]. 
Typical instances of such systems are healthcare systems [6] containing hardware and 
software components, human factor, and organizational elements, or complex distri-
bution networks composing of many different hardware elements [7]. This heteroge-
neity indicates that it can be quite difficult to model such systems as BSSs and, there-
fore, MSSs are more appropriate. 

Reliability analysis of MSSs is a complex problem that includes a lot of tasks. This 
paper focuses on two specific tasks: identification of situations in which component 
or its state is critical for system activity, i.e. situations in which a degradation of a 
component results in system degradation, and quantification of importance of individ-
ual system components, i.e. finding components with the greatest influence on system 
activity. One of the possible ways of how to perform this analysis is application of 
logical differential calculus. 

Logical differential calculus has originally been developed for analysis of dynamic 
properties of Multiple-Valued Logic (MVL) functions [8]. This tool can also be ap-
plied in reliability analysis to identify circumstances under which a change of a state 
of a system component results in a change of system state. So, it allows us to find 
situations in which a degradation of a given component or its state is critical for sys-
tem degradation [9], [10]. In this paper, we consider its application in importance 
analysis of k-out-of-n MSSs. 

A k-out-of-n system is composed of n components. Based on [11], behavior of this 
system can be described as follows: 

─ if at least k components are in state m -1, then the system is in state m -1, 
─ else if at least k components are in state m -2 or better, then it is in state m -2, 

… 
─ else if at least k components are in state 1 or better, then it is in state 1, 
─ else the system is in state 0. 

Efficient ways of how to calculate some global characteristics, e.g. system state 
probability or system availability, for this kind of systems have been considered, for 
example, in [12], [13]. However, those papers have not considered investigation of 
importance of individual system components (or their states) on system activity. This 
problem is taken into account on the next pages. 

2 Reliability Analysis of Multi-State Systems 

A MSS is a mathematical representation of a system under consideration. It allows us 
to define m levels at which the system or its components can operate. These levels are 
known as states of the system/component and they take values from the set {0,1,…, 
m -1}. State 0 means that the system/component is completely failed, while state m -1 
implies that it is perfectly functioning. A mapping that defines the dependency of 
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system state on the states of its components is known as structure function. For a MSS 
composed of n components, this function has the following form [3], [9]: 

(x): {0,1,…, m -1}n  {0,1,…, m -1} , (1) 

where xi is a variable defining state of the i-th system component for i = 1,2,…, n, and 
x = (x1, x2,…, xn) is a vector of components states (state vector). Specially, if m = 2, 
then definition (1) agrees with the structure function of a BSS. Please note that the 
structure function of a MSS can also be viewed as a MVL function. In this case, xi is 
known as a MVL variable and vector x can be named as a MVL vector. 

Based on the properties of the structure function, two classes of MSSs can be de-
fined – coherent and incoherent. A MSS is coherent if its structure function is non-
decreasing in all its arguments, i.e. there exist no circumstances under which degrada-
tion (improvement) of a system component can result in improvement (deterioration) 
of system state. In what follows, only coherent systems are considered. 

The structure function defines system topology. However, if we want to investigate 
not only system topology but also some others characteristics, such as system state 
probability, system availability, or importance of individual system components, the 
state probabilities of the system components have to be known. For the i-th system 
component, they will be denoted as follows: 

pi,s = Pr{xi = s}, s = 0,1,…, m -1 . (2) 

Using these probabilities and the system structure function, we can compute two 
basic characteristics of MSSs – system state probability [3], [9]: 

Pr{(x) = j}, for j  {0,1,…, m -1} , (3) 

and system availability/unavailability with respect to state j of the system [3], [9]: 

.}1,,2,1{for},)(Pr{},)(Pr{   mjjUjA jj xx   (4) 

This definition implies that system availability (unavailability) for system state j 
agrees with the probability that the system is in such state that its performance can 
(cannot) satisfy a demand corresponding to state j. For illustration, let us consider a 
power supply unit that can generate 30 MW, 10 MW, or 0 MW of electricity. Clearly, 
the system has 3 performance levels from which level 30 MW corresponds to state 2, 
level 10 MW to state 1 and level 0 MW to state 0. If there is a demand of at least 5 
MW of electricity, then the unit is working if it is at least in state 1. This implies that 
it is available if it is at least in state 1 and, therefore, its availability (unavailability) 
should be computed with respect to state 1 for this situation. 

2.1 Importance Analysis of Multi-State Systems 

System state probability and availability are important characteristics of a system. 
They give us a global view on the system. On the other hand, they carry no informa-
tion about the system structure, i.e. they do not allow investigating influence of indi-
vidual system components or their states on the system. For this purpose, other indi-
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ces are used. These indices are known as Importance Measures (IMs), and some of 
the most commonly known are Structural Importance (SI) and Birnbaum’s Impor-
tance (BI). The SI investigates only system topology while the BI takes into account 
also state probabilities of the system components. These two indices play a key role in 
importance analysis because a lot of other measures are defined based on them [4].  

Importance analysis of MSSs based on SI and BI has been considered in several 
papers, e.g., [9], [14], [15], [16]. In those papers, several versions of these measures 
have been proposed depending on whether we want to: 

─ investigate influence of a given component state on a given system state/ availabil-
ity level [9], [14], 

─ analyze the total influence of a given component state on the system (not only on a 
specific system state) [15], 

─ inspect the total importance of a given component [16]. 

The approaches presented in the aforementioned works have been combined into 
one complex framework in [10]. According to that work, the SI agrees with a relative 
number of situations in which a given component (state) is critical for degradation of 
(a given state/availability level of) the system, while the BI corresponds to the prob-
ability that such situation occurs. (The criticality means that degradation of a given 
component results in system degradation.) These definitions indicate that identifica-
tion of situations in which a given component (state) is critical for degradation of (a 
given state/availability level of) the system represents the main issue in the computa-
tion of these measures. In the considered paper, this task has been solved using a spe-
cial tool of MVL that is known as logical differential calculus [8]. 

Logical differential calculus has been developed for analysis of dynamic properties 
of MVL functions. Logic derivative is a key term of this tool. There exist several 
types of logic derivatives but, for the purpose of this paper, Direct Partial Logic De-
rivatives (DPLDs) are the most important. 

A DPLD reveals circumstances under which a considered change of a MVL vari-
able results in the studied change of the analyzed MVL function. Since the formal 
definition of the structure function of a MSS agrees with the definition of a MVL 
function, this derivative can also be used in the analysis of MSSs. In this case, it al-
lows us to detect situations in which a given change of a given component state re-
sults in the studied change of the system state. More formally, a DPLD with respect to 
variable xi is defined as follows [8], [9]: 

  ,,,1,,10,,for 
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otherwise,0

),(and),(if,1
)(

)(

hjrsm-,hjs,r

hrjs
rsx

hj ii

i




 





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where (ai, x) = (x1, x2,…, xi -1, a, xi +1,…, xn) for a  {s, r}. 
Depending on the relations between s and r and j and h in (5), four kinds of DPLDs 

with different physical meaning can be used in reliability analysis of MSSs: 

─ if s > r and j > h, then the DPLD identifies situations in which degradation of com-
ponent i from state s to r results in degradation of system from state j to h, 
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─ if s < r and j < h, then the DPLD detects circumstances under which improvement 
of component i from state s to r causes improvement of system state from value j to 
h, 

─ if s > r and j < h, then the DPLD finds circumstances under which degradation of 
component i from state s to r results in improvement of system state from value j to 
h, 

─ if s < r and j > h, then the DPLD reveals situations in which degradation of the 
system from state j to h is caused by improvement of component i from state s to r. 

Clearly, situations identified by the last two kinds of DPLDs cannot occur in case 
of a coherent system and, therefore, only the first two DPLDs are meaningful in the 
analysis of coherent MSSs. Furthermore, in what follows, we will primarily deal with 
investigation of consequences of component degradation on system activity. This 
implies that only DPLDs in which s > r and j > h will be taken into account. 

Based on the meaning of DPLDs, it is clear that they allow us to find state vectors 
of the form of (si, x) at which deterioration of state s of component i to state r results 
in degradation of system state j to h. These state vectors are known as critical state 
vectors and, clearly, they describe circumstances under which a given component 
state is critical for a given degradation of system state j. 

One of the assumptions that are often used in importance analysis of MSSs is that 
the system components degrade gradually state by state. This assumption is not unre-
alistic because even if a component deteriorates from state m -1 to state 0, we can 
assume that it stays in every state from set {1,2,…, m -2} for very short time [9]. This 
implies that only DPLDs of the form of )1()(  ssxhj i  have to be taken 

into account if we want to investigate importance of individual system components. 
DPLDs give us a detailed view on the dependency between component degradation 

and system degradation. However, they are not very appropriate for importance 
analysis of a general MSS, i.e. a MSS in which a minor degradation (degradation by 
one state) of any system component can result in degradation of the system by more 
than one state. This inadequacy results from the fact that a lot of DPLDs have to be 
computed in such situations, e.g., if we want to investigate consequences of a minor 
degradation of state s of component i, then we have to compute DPLDs of the form of 

)1()(  ssxhj i  for all h < j, i.e. j -1 DPLDs. The similar fact can also be 

observed if we want to use DPLDs to investigate the coincidence between component 
degradation and decrease in system availability level. To avoid this problem, new 
types of logic derivatives have been introduced in [10]. These derivatives were named 
as Integrated Direct Partial Logic Derivatives (IDPLDs) because they combine sev-
eral types of DPLDs together. Depending on the combined DPLDs, three types of 
IDPLDs have been defined. In this paper, only IDPLDs of type I and III are used. 

An IDPLD of type I is defined as follows: 
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and it allows us to find situations in which a given degradation of state s of system 
component i results in a deterioration of system state j. Quantification of these situa-
tions allows us to estimate influence of the considered component degradation on 
system state j. 

An IDPLD of type III has the following form: 
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where notation h≥j (h<j) means that all system states that are greater than or equal to 
(less than) j are taken into account. Please note, this definition implies that IDPLDs of 
type III can be used to find state vectors at which a degradation of a given component 
state causes degradation of a given level of system availability and, therefore, they 
can be used to quantify consequences of a given deterioration of state s of component 
i on level j of system availability. 

It has been mentioned in the previous paragraphs that quantification of situations in 
which an IDPLD of type I or III takes nonzero value allows us to estimate influence 
of degradation a given component state on system state/availability level. This quanti-
fication can be done in two ways [10]. Firstly, we can compute truth density (a rela-
tive count of situations in which a function with a Boolean-valued output takes non-
zero value) of the considered IDPLD. Result of this computation agrees with the rela-
tive number of situations in which a considered degradation of a given component 
state results in degradation of a given system state/availability level. If we assume that 
the system components degrade gradually state by state, then this number corresponds 
to SI of a given component state for a given system state/availability level [10]. This 
measure does not take the components states probabilities into account and, therefore, 
it investigates only topological importance of a given component state. 

Another possibility is to calculate the probability that the considered IDPLD is 
nonzero. This agrees with the probability that the studied degradation of a given com-
ponent state causes decrease in a given state/availability level of the system. If we 
assume that only minor degradations of the system components can occur, then this 
number agrees with BI of a given component state for a given system 
state/availability level [10]. Unlike the SI, the BI provides more information because 
it considers not only system topology but also state probabilities of the components. 

The previously mentioned versions of SI and BI deals with importance of a given 
component state for a given state/availability level of the system. It has been shown in 
[10] that these measures can also be used to investigate: 

─ the total importance of a given component state, 
─ the total importance of a component for a given system state/availability level, 
─ the total importance of a given component. 

The SI measures that can be used for these purposes are presented in Table 1. The 
similar table can be shown for the BI measures, but the only difference will be in 
replacement of the truth density notation with the probability that the IDPLD takes 
nonzero value. Please note that complex importance analysis of a MSS can be per-
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formed by computation of all types of SI or BI measures. Based on the formulae pre-
sented in Table 1, the SI (BI) measures investigating all possible dependencies be-
tween component degradation and system deterioration can be expressed in the form 
of Table 2 (IMs concerning with system state) or Table 3 (IMs focusing on system 
availability level). 

Table 1.  Summary of structural importance measures investigating topological properties of 
the system based on component degradation 

Structural im-
portance 

Definition Interpretation 

The SI of a given 
component state 
and for a given 

system state 

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component i results in degradation 
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which degradation of state s of 
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of level j of system availability. 
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which state s of component i re-
sults in system degradation. 
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A relative number of situations in 
which degradation of component i 
causes degradation of state j of the 
system. 
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component for a 

given system 
availability level 
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A relative number of situations in 
which degradation of component i 
causes degradation of level j of 
system availability. 

The total SI of a 
given component 










1

1
,SI

1

1
SI

m

s
sii m

 
A relative number of situations in 
which degradation of component i 
results in system degradation. 

*note: TD(.) – truth density of the argument interpreted as a function with a Boolean-valued output 

3 Importance Analysis of k-out-of-n Multi-State Systems 

Let us consider a k-out-of-n MSS. According to Table 1 – Table 3, the most important 
thing in computation of the IMs considered above is efficient identification of non-
zero elements of IDPLDs. For example, in case of computing , this agrees with 

finding all state vectors (.i, x) = (x1, x2,…, xi -1, xi +1,…, xn) for which IDPLD 

j
si ,SI

)1()(  ssxj i  takes nonzero value. Now, let us find IDPLDs of which form 

can be nonzero. Firstly, let us assume that j > s. Such derivative cannot be nonzero 
because the k-out-of-n MSS can be in state j if and only if at least k components are in 
state j or greater. This implies that degradation of a component that is in a state less 
than j cannot result in degradation of system state j because system state is not  
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Table 2.  Structural importance measures investigating topological properties of the system 
with respect to system state 

Component state 
 

1 2 … m -1 
Average 

1 1
1,SI i  1

2,SIi  … 


1
1,SI mi  1SI i  
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Table 3.  Structural importance measures investigating topological properties of the system 
with respect to system availability level 

Component state 
 

1 2 … m -1 
Average 

1 1
1,SIi  1

2,SIi  … 1
1,SI mi  1SI i  

2 2
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determined by this component. Secondly, let us assume that j < s. This derivative 
cannot also take nonzero values because the system can be in state j if and only if not 
more than k -1 components are in a state greater than j. It follows that a minor degra-
dation of a component that is in a state greater than system state j does not result in 
violation of this condition and, therefore, there exist no circumstances under which 
degradation of this component from state s to state s -1 can result in degradation of 
the system if the system is in state j such that j < s. Finally, let us consider an IDPLD 
of the form of )1()(  jjxj i . This derivative identifies situations in which a 

minor degradation of state j of component i results in degradation of system state j. 
Such situations can occur if and only if component i is in state j and exactly k -1 from 
the remaining components are in state j or greater than j. These situations correspond 

to state vectors of the form of  

where u1, u2,…, uk -1 are components that are in states greater than or equal to j; v1, 

v2,…, vn-k are components that are in states less than j; , for t = 1,2,…, k -1, de-

),,,,,,,,( )(,)2(,)1(,)1(,)2(,)1(,

21121

knj
v

j
v

j
v

kj
u

j
u

j
ui knk

rrrrrrj 




),(tj
ut

r 

- 448 -



notes state of component ut (this state is greater than or equal to j); and , for t = 

1,2,…, n - k, means that component vt is in a state less than j. It can be simply shown 

that  such state vectors exist. It follows that integrated deriva-

tives 
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Based on the results obtained in the previous paragraph and information presented 

in Table 1,  can be computed for a k-out-of-n MSS using the following formula: 
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Above, we have shown that only IDPLDs of the form of )1(  jxi)(  jj  

are nonzero in case of a k-out-of-n MSS. Since this IDPLD is nonzero if and only if 
states of the system components are characterized by state vectors of the form of  

, then degradation of component 

i from state j to j -1 has to result in degradation of system state from j to j -1. This 
implies that the nonzero elements of this derivative agrees with the nonzero elements 
of DPLD 
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)1()1(  jjxjj i . It follows that only such DPLDs are nonzero 

in case of a k-out-of-n MSS. Using this fact and definitions (6) and (7) of IDPLDs, the 
next formula can be proved simply for k-out-of-n MSSs: 
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This formula implies that the k-out-of-n MSS represents a special type of MSSs in 
which a minor degradation of a system component can result only in a minor degrada-
tion of system state. Furthermore, it follows that the following relationships exist 
between SI measures presented in Table 1: 
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Finally, the total topological importance of component i for the activity of the k-
out-of-n MSS can be computed using the following formula: 
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All these formulae imply that there is no sense to distinguish between the SI meas-
ures investigating topological properties of the k-out-of-n MSS with respect to system 
state (Table 2) and with respect to system availability level (Table 3): 

Now, let us consider the BI measures. These measures can also be computed using 
IDPLDs I or III. However, as has been shown in (10), these IDPLDs computed with 
respect to system state/availability level j agree with )1()1(  ssxjj i  in 

case of k-out-of-n MSSs and, therefore, the following relationships will hold between 
BI measures calculated with respect to system state and with respect to system avail-
ability level: 
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This implies that only problem in computation of the BI measures is calculation of 
the probability that DPLD )1()1(  jjxjj i  takes nonzero value. Accord-

ing to the results presented in the previous paragraphs, this DPLD takes nonzero val-
ues for all state vectors of the structure function that have the form of 

. Since a DPLD computed with 

respect to variable xi does not depend on this variable [8], [9], the nonzero elements of 
the DPLD agree with the state vectors that have the following form: 

. Therefore, the probability that 
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the DPLD is nonzero can be computed simply as the probability that the system com-
ponents are in states corresponding to state vectors of this form. 

4 Case Study: Oil Supply System 

For illustration of our approach, let us consider a modified oil supply system proposed 
in [12] and considered in [13]. This system is depicted in Fig. 1. There are 4 pipelines 
that deliver oil from the oil source to 3 oil stations. The system and every pipeline 
have 4 possible states. The system state is defined by the number of oil stations to 
which oil can be delivered through the pipelines (Table 4). The state of a pipeline 
identifies which oil stations can be supplied through the pipeline (Table 4). Next, let 
us assume that the oil source is perfectly functioning and an oil station is working if at 
least k pipelines are able to deliver oil to it. This description implies that only relevant 
components that determine system state are 4 pipelines. So, we obtain a k-out-of-4 
MSS in which m = 4 and k  {1,2,3,4}. 

 

Fig. 1. Oil supply system considered in [12] and [13] 

Table 4.  Interpretation of system and component states for the oil supply system  

State System Component (pipeline) i 

0 No oil station is supplied. Pipeline i is not able to deliver oil to any station. 

1 Only oil station 1 is supplied. Pipeline i is able to deliver oil only to station 1. 

2 
Only oil stations 1 and 2 are 
supplied. 

Pipeline i is able to deliver oil only to oil stations 
1 and 2. 

3 All oil stations are supplied. Pipeline i is able to deliver oil to all oil stations. 

 
Firstly, let us investigate topological properties of this system. This can be done 

simply using SI measures shown in Table 1 and formulae (11) and (12). For pipeline 
1 and individual values of k, these results are presented in Table 5. According to the 
results presented in the form of formulae (11) and (12), the SI measures computed in 
these tables investigate topological properties of the system not only with respect to 
system state but also with respect to system availability level. As we can see (the 
lower right corner of sub-tables), degradation of component 1 has the greatest influ-
ence on system activity if k  {2,3} and the least if k  {1,4}. Next, in the bottom 
parts of the sub-tables, we can see that, in case of k  {1,2}, the most important state 
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of the component is state 3, while the least important is state 1. On the other hand, if 
k  {3,4}, then the situation is completely different, i.e. the state with the greatest 
topological influence on system degradation is state 1, while state 3 has the least in-
fluence. Similarly, using the information presented in the right columns of the sub-
tales, we can state if k  {1,2}, then pipeline 1 has the greatest influence on system 
state/availability level 3 and the least on system state/availability level 1; while if 
k  {3,4}, then pipeline 1 has the greatest influence on system state/availability level 
1 and the least on system state/availability level 3. Clearly, the same results can be 
obtained for the remaining pipelines since formulae (11) and (12) imply that all com-
ponents (or components states) have the same topological influence in case of k-out-
of-n systems and fixed values of k and n. 

Table 5.  Structural importance measures investigating pipelines 1,2,3,4 for k = 1, 2, 3, 4  

k = 1  k = 2 
Component state  Component state  

1 2 3 
Average 

 1 2 3 
Average 

1 0.0156 0 0 0.0052  0.1406 0 0 0.0469 

2 0 0.1250 0 0.0417  0 0.3750 0 0.1250 

S
ys

te
m

 s
ta

te
 

3 0 0 0.4219 0.1406  0 0 0.4219 0.1406 

Sum 0.0156 0.1250 0.4219 0.1875  0.1406 0.3750 0.4219 0.3125 
          

k = 3  k = 4 
Component state  Component state  

1 2 3 
Average 

 1 2 3 
Average 

1 0.4219 0 0 0.1406  0.4219 0 0 0.1406 

2 0 0.3750 0 0.1250  0 0.1250 0 0.0417 

S
ys

te
m

 s
ta

te
 

3 0 0 0.1406 0.0469  0 0 0.0156 0.0052 

Sum 0.4219 0.3750 0.1406 0.3125  0.4219 0.1250 0.0156 0.1875 

 
Now, let us calculate the BI measures for this system. These measures take into ac-

count not only system topology but also state probabilities of the pipelines. In this 
case, we use numbers presented in [13] (Table 6). 

The BI measures for the oil supply system can be computed using formulae (13). 
According to these formulae, the most important part in computation of these meas-
ures is calculating the probability that DPLD )1()1(  jjxjj i , for 

j = 1,2,3 and i = 1,2,3,4, takes nonzero value. This can be done simply by identifying 

the state vectors of the form of  

for specific values of j and k. For example, if we want to compute the probability that 
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DPLD )01()01( 1  x  is nonzero for k = 1, then its nonzero elements agree  
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Table 6.  State probabilities of the pipelines of the oil supply system 

Components state 
Component

0 1 2 3 

1 0.0500 0.0950 0.0684 0.7866

2 0.0500 0.0950 0.0684 0.7866

3 0.0300 0.0776 0.0446 0.8478

4 0.0300 0.0776 0.0446 0.8478

 

with the state vectors of the form state vector has this 

form, i.e. state vector (.,0, ); the t a h PLD takes nonzero 
alue is computed as follows: 
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If we want to compute the probability that DPLD )12()12( 1 x   

nonzero value for k = 1, then we should calculate the probability that state vector 

(.1, x) has the form of . This condition is met if (.1, x) ≤ (.,1,1,1), 

wh x ,…, x , x ,…, x
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ere relation “≤” between state vectors (.i, x) = (x1, 2 i -1 i +1 n) and 
(.i, y) = (y1, y2,…, yi -1, yi +1,…, yn) means that xk ≤ yk for k = 1,2,…, i -1, i +1,…, n. So, 
the DPLD is nonzero with  probability: 
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

Finally, the probability of DPLD )23()23( 1  x  k = 1 being nonzero for 

agrees with the probability that state vector (.1, x) has the form of 

Usin
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Equations (14) – (16) identify the probability that DPLDs of the form  of 
)1()1( 1  jjxjj  takes nonzero value. Since this probability agrees with 

 and values of j
j,1BI jBI j , it allows us to investigate importance of degradation of 

sta
BI measures investigating im

,1

te j of pipeline 1 on state/availability level j of the oil supply system. Since all other 
portance of a degradation of a component on system 
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state/availa y level equal to 0 (formulae (13)), these values can be used to in-
vestigate importance of a given component state for the system, or total importance of 
pipeline 1 for a specific system state/availability level, or total importance of pipeline 
1 for the entire system. All these numbers are presented in the upper left sub-table of 
Table 7. Clearly, the same results can be obtained if we investigate importance of 
component 2, since state probabilities for these components are same. 

Table 7.  Birnbaum’s importance measures investigating pipelines 1 and 2 for k = 1, 2, 3, 4 

bilit  are 

k = 1  k = 2 
Component state  Component state  

1 2 3 
Average 

 1 2 3 
Average 

1 0.00005 0 0 0.00002  0.0038 0 0 0.0013 

2 0 0.0 7 01 0 0.0006  0 0. 7 037 0 0.0126 

S
ys

te
m

 s
ta

te
 

3 0 0 0.0049 0.0016  0 0 0. 3 073 0.0244 

Sum 0.00004 0.0017 0.0049 0.0022  0.0038 0.0377 0.0733 0.0382 
          

k = 3  k = 4 
Comp taonent s te  Component state  

1 2 3 
Average 

 1 2 3 
Average 

1 0.1023 0 0 0.0341  0.8939 0 0 0.2980 

2 0 0.2 7 79 0 0.0932  0 0. 9 680 0 0.2270 

S
ys

te
m

 s
ta

te
 

3 0 0 0.3563 0.1188  0 0 0. 4 565 0.1885 

Sum 0.1023 0.2797 0.3563 0.2461  0.8939 0.6809 0.5654 0.7134 

 
Using the similar proce   presented above e B u ll 

s  c n e  l t e ). 
F m w t oc or h s e e 
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dure as has been , th I meas res of a
ystem
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ompone
ore, if 

ts can b
e repea

e obtain
 this pr

d (upper
edure f

ef
ot

sub-tabl
er value

s of Tab
 of k, i.

le 7 and Table 8
. for k =r  2,3,4, w

n investigate importance of individual pipelines for all versions of the oil supply 
system (the remaining parts of Table 7 and Table 8). (Please note that we obtain the 
same results for components 1 and 2 and for components 3 and 4 since their state 
probabilities have the same values.) According to the data presented in Table 7 and 
Table 8, we can state that pipelines 1 and 2 have less influence on the activity of the 
oil supply system than pipelines 3 and 4 if k = 1,2,3 but greater if k = 4. Another in-
teresting fact that can be noticed based on Table 7 and Table 8 is that all system com-
ponents have greater influence on greater states of the system in case of k  {1,2,3}, 
(e.g., if k = 1, then degradation of component 1 results in degradation of system state 
3 with the probability 0.0016 while in degradation of system state 1 with the probabil-
ity 0.00002. However, in case of k = 4, all pipelines are more important for lower 
states of the system (e.g., a degradation of pipeline 1 causes degradation of system 
state 1 with the probability 0.2980 and degradation of system state 3 with the prob-
ability 0.1885). The similar facts can be observed for the BI measures investigating 
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the total importance of individual states of the pipelines for the oil supply system (the 
bottom rows in sub-tables of Table 7 and Table 8). All these results imply that impor-
tance of individual system components in case of k-out-of-n systems largely depends 
on mutual values of k and n. 

Table 8.  Birnbaum’s importance measures investigating pipelines 3 and 4 for k = 1, 2, 3, 4  

k = 1  k = 2 
Component state  Component state  

1 2 3 
Average 

 1 2 3 
Average 

1 0.00008 0 0 0.00003  0.0053 0 0 0.0018 

2 0 0.0023 0 0.0008  0 0.0454 0 0.0151 

S
ys

te
m

 s
ta

te
 

3 0 0 0.0069 0.0023  0 0 0. 7 089 0.0299 

Sum 0.00008 0.0023 0.0069 0.0031  0.0053 0.0454 0.0897 0.0468 
          

k = 3  k = 4 
Component state  Component state  

1 2 3 
Average 

 1 2 3 
Average 

1 0.1192 0 0 0.0397  0.8 55 0 0 7 0.2918 

2 0 0.2999 0 0.1000  0 0.6524 0 0.2175 

S
ys

te
m

 s
ta

te
 

3 0 0 0.3788 0.1263  0 0 0. 6 524 0.1786 

Sum 0.1192 0.2999 0.3788 0.2660  0.8754 0.6524 0.5246 0.6841 

5  Co lusio

In this paper, importance analysis of a k-out-of-n MSS was considered. We summa-
 the qualitative and quantitative analysis of MSSs and pro-
lculation of all range of the SI and BI measures. Furthermore, 

we showed that a k-out-of-n MSS is a special type of MSSs in which a minor degra-

nc n 

rized some results from
posed the method for ca

dation of any system component can result only in a minor degradation of system 
state. Because of that, it is not important to distinguish between IMs focusing on sys-
tem state and IMs dealing with system availability level. Next, using logical differen-
tial calculus, we found closed-form expressions for calculation of the SI measures for 
a k-out-of-n MSS. All these results were used in the analysis of the oil supply system 
considered in [12] and [13]. Based on our approach, we identified topological impor-
tance of individual system components for different values of k and identified which 
components of the oil supply system were the most important if the state probabilities 
of individual system components were known. Finally, we would like to mention that 
the results presented in this paper could also be applied in the analysis of other types 
of systems such as medical and temporal database systems studied in [17] and [18]. 
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Furthermore, they could also be used in other research fields, such as data mining, 
where they can be used to find key attributes in a dataset [19].    
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