A Corpus Builder: Retrieving Raw Data from GitHub for Knowledge
Reuse In Requirements Elicitation

Roxana Lisette Quintanilla Portugal, Hugo Roque, Julio Cesar Sampaio do Prado Leite
Departamento de Informtica, PUC-Rio / Rio de Janeiro RJ 22451-9000, Brasil
{rportugal, julio}@inf.puc-rio.br
hugo.roque@aluno.puc-rio.br

Abstract

Requirement elicitation is an important
task, which can lead to cost reduction in
the overall software process, as it avoids
failures due to lack of proper understand-
ing about what to build. However, usu-
ally, there is a lack of time devoted to
proper elicitation during software con-
struction. We assume information from
similar projects is a valuable knowledge
for requirements engineers when facing a
new project in the same or related domain,
and its acquisition can be speeded up by
knowing their main features. This infor-
mation is usually located in Readme doc-
uments of GitHub. We present a tool that
helps in handle this large amount of infor-
mation by retrieving a corpus of Readme
documents given a domain-related query.
It is described, in detail, how a corpus is
created and stresses the importance of hav-
ing a quality corpus as base for data min-
ing, or as input for tools of qualitative data
analysis.

1 Introduction

Imagine the following situation: a group of mu-
sicians is looking to produce a music application;
they believe it could be a hit. They contacted angel
investors, which are willing to invest, but needed
more details about the idea. As such, they decided
to hire a requirements engineering company to or-
ganize the intentions, before contracting a soft-
ware developer company to build the application.
The musicians overall idea is to have an applica-
tion user to know a city, a neighborhood, or a place
like a university, by the music that it is being lis-
tened around.

It happens that the requirements engineering

48

company, hired to do the job, is not familiar with
the domain and would have to quickly gain lever-
age on the contextual knowledge to better collab-
orate with the musicians, as well as to build a
proper requirements for future developers. This
contextual knowledge must be both related to the
client side, but also to the possible software ecol-
ogy where the application will operate.

We depart from the assumption that
requirements-related information can be elicited
from Big Data, in this case we use the software
repository GitHub, since this source owns, to date,
more than 35 million of projects in its repository
(Metz, 2016). This assumption is founded on the
evidence that projects on GitHub has encoded
knowledge. Although this encoded knowledge is
mainly represented in programming languages,
there are annotations in natural language that
describe the project purpose. Of course, those
projects are different in several manners, either in
quality of its contents, as well as in the level of in-
formation provided in natural language. However,
most of the projects we have retrieved from this
repository do provide some natural language texts
i.e., the Readme document of each project, which
helps in understanding a project purposes. Our
work is contextualized in what (Markus, 2001)
calls secondary knowledge miner which is defined
as “people who seek to answer new questions or
create new knowledge through analysis of records
produced by other people for different purposes”
and “extract knowledge from records that were
collected by others, possibly unknown to the
reusers. ... Markus also noted that this reuse is
not limited to structured data. “Although most
research on data mining has focused on structured
data, this is data on databases or knowledge
datasets, similar issues are likely to apply in the
case of secondary reusers of documents”.

A requirements elicitor could perform a man-

ual revision of GitHub projects given a domain-
related query; however, the reading of hundreds of
projects may not be efficient in time-constrained
settings. For instance, a work from EMSE' field
mentions that researchers manually extracted data
from 32 publications published in digital libraries
which it took 80 hours for two tasks: (1) extraction
and (2) analysis of data (Ekaputra et al., 2014).
Nowadays both Digital Libraries and GitHub own
a plethora of data; on that ground we automate the
documents extraction task from projects hosted on
GitHub, this time using its Readme perspective.
Thus, a set of documents is ready for the analy-
sis task that can be performed manually assisted
by tools for qualitative data analysis. e.g., Atlas.ti
or NVivo. Or to perform an automatic analysis by
using text-mining techniques.

The remainder of this paper is structured as fol-
lows. Section 2 provides a research baseline for
motivation. Section 3 explains the rationale for
selecting artifacts in GitHub. Section 4 details the
design and construction of the tool. Section 5 de-
scribes the qualitative analysis conducted in the
corpus of Readmes for the domain “music appli-
cation”. Section 6 concludes and points out future
work.

2 Corpus of Documents

(Sinclair, 2005) states this principle when build-
ing a Corpus: “The contents of a corpus should be
selected regardless of their language, but accord-
ing to their communicative function in the com-
munity in which they occur”. In this respect, a
previous work (Portugal et al., 2015) performed
an exploratory research to verify to what extent is
feasible the Readme document for use in require-
ments engineering. In this regard, the Readme per-
spective of GitHub projects has the communica-
tive function to describe the main features of a
project. Similarly, the Issues perspective has the
communicative function of tracking the evolution
of software features.

Another aspect about the construction of a Cor-
pus is that it can be considered as the first step to-
wards the building of a web extraction tool, specif-
ically a Natural Language Processing NLP-based
wrapper (Laender et al., 2002). A Similar ap-
proach to extract data given a query can be found
in the tool Webcorp (Renouf, 2003) however, this
tool does not cope with our goal, as they mainly

"Empirical Software Engineering

49

use the Google API for gathering information; as
such this mechanism does not cover the internal
documents of GitHub projects. Another project,
very similar to ours is the GHTorent (Gousios,
2013), which in fact, can accomplish more than
a retrieval of Readmes, making database dumps
of all of the projects on GitHub. However,
we found some technical barriers, specially for
users not used to deal with this kind of technol-
ogy. For instance, to get projects related to a
query, the user may need to download a database
dump (around 30GB size in 10 hours) and then
supported by a Database Management System
(DMBS) as MySQL, the user will be able to query
in SQL format the information needed. Instead,
we are proposing a service to deal with other type
of queries; thinking in requirements, our specifi-
cation would be:

Given a query e.g “music application”
the user may be able to download a
zip file of Readmes with extension .txt,
numbered by order of result’s appear-
ance, and each document should be
named with the project and its owner
name.

Another barrier to accomplish our goal with
(Gousios, 2013) work is that the schema of
GHTorent database dump? does not contain a ta-
ble related to Readmes information. However this
this tool would be useful when retrieving GitHub
Issues.

Another constraint that motivated us to build a
service, is that Readmes can vary daily on GitHub,
when new projects are created or when the existing
change its relevant. This relevance is given by the
Forks, Stars, Pull-request, number of Issues and
Comments a project receives.

3 GitHub Perspectives for Requirements
Elicitation

Using the concepts of viewpoints and perspectives
(do Prado Leite and Freeman, 1991) we, as re-
quirements engineers, see the GitHub in the fol-
lowing way: A project, specifically an application,
can express a viewpoint, i.e. a way to address what
the user needs in certain domain. It happens that
each project, viewpoint, may use several represen-
tations (perspectives), to describe a project. These
GitHub perspectives are: Readmes, Issues, Issue’s

*http://ghtorrent.org/dblite/

README.md

Node Music Sync for Android

A syncing application for Android to sync playlists from Node Music Player
https://github.com/benkaiser/node-music-player to an Android phone.

Download latest build apk from here

Usage

* You enter the url of the server you want to fetch playlists from
« Select the playlists you want to sync to your device
« Sit back and let it work it's magic!

Note

This app does not actually play the music on your phone, it just syncs the songs and the playlists
across. You can use one of the following music players to play your music:

« Vanilla Music: https://play.google.com/store/apps/details?id=ch.blinkenlights.android.vanilla

« Music Player Free: https://play.google.com/store/apps/details ?id=yong.app.music

« Apollo: (Available through CM Apps https://play.google.com/store/apps/details?
id=com.maartendekkers.cmapps&hl=en)

Got an Open Source Media Player for Android and want it listed? submit an issue!

Figure 1: A Readme on GitHub

Node Music Sync for Android

A syncing application for Android to sync playlists from Node Music
player

https://github.com/benkaiser/node-music-player to an Android phone.
Download latest build apk [from here]
(https://raw.githubusercontent.com/benkaiser/android-node-music-
sync/master/app/app-release.apk)

###Usage

- You enter the url of the server you want to fetch playlists from

- Select the playlists you want to sync to your device

- 5it back and let it work it's magic!

##Note

This app does not actually play the music on your phene, it just syncs
the songs

and the playlists across. You can use one of the following music players
to play

your music:

- vanilla Music: https://play.google.com/store/apps/details?
id=ch.blinkenlights.android.vanilla

- Music Player Free: https://play.google.com/store/apps/details?
id=yong.app.music

- Apollo: (Available through CM Apps
https://play.google.com/store/apps/details?
id=com.maartendekkers.cmapps&hl=en)

Got an Open Source Media Player for Android and want it listed? submit

[an issue]
(https://github.com/benkaiser/android-nodel-music-sync/issues/new)!

Figure 2: Raw Readme data

Comments, Commits, Commit’s Comments, and
Gits. We argue that each of this artifacts express a
perspective of a particular viewpoint (project) be-
cause, on the Readme perspective a user is able
to see a summary of features that the application
implements. In the Issue perspective it is possible
to get more specialized information about features
(e.g. bugs or enhancements). Even more, it is pos-
sible to see the decisions (Comments perspective)
taken about an issue before been implemented.

3.1 The Readme Artifact

(Kupiec et al., 1995) state that “Abstracts are
sometimes used as full document surrogates, for
example as an input to text search systems, but

20

they also speed access by providing an easily di-
gested intermediate point between a documents ti-
tle and its full text, that is useful for rapid rel-
evance assessment”. We judge that Readmes
have the role of abstracts on GitHub environment.
Fig.1 shows the Readme document of the project
android-node-music-sync from user benkaiser.
This project was found with the query “music ap-
plication android”. Using the GitHub API v3.0
to access the data, we obtained its raw version
Fig.2. As we analyzed the raw data, we figure
it out that in our ongoing research, we will be
facing the mining of documents of different na-
ture, this is, structured data: source code, semi-
structured data: documents with markups such us
html, xml, markdown? among others, and unstruc-
tured data: free texts in comments and other doc-
uments. This time, by using the Readme docu-
ment we are dealing with semi-structured texts, as
most of the Readmes follow the predefined mark-
down format. For instance (see Fig.2) to indicate
an url, they used [texto](url). In other exemplars
we found ![alt text](image path) to indicate an im-
age.

3.2 The Requirement-Related Information

What we pursue with a corpus of Readmes is the
finding requirement-related information, which
are phrases that can be mined to give an idea of the
project purposes. Thus, the reader can reuse this
knowledge for learning or generating new ideas
in requirements elicitation tasks. From Readme
(Fig.1) some candidate phrases to be mined would
be:

“A syncing application for Android to sync
playlist from Node Music Player to an Android
phone”

“This app does not actually play the music on
your phone, it just syncs the songs and the
playlist across. You can use one of the following
music players to play your music”

4 Working Towards the Tool

As we started to explore GitHub, we built a script
to extract readmes just for the query “Real Estate
in: readme” (Portugal et al., 2015). This serve
us for our initial purpose of discover ideas and
find domain-independent regularities (Arora et al.,

*Markdown is a lightweight markup language with plain
text formatting syntax designed so that it can be converted to
HTML. source: Wikipedia

0
c
o
0 »
[i [o
S 3
5 3
FE
a| £ =
Q| '® o
|| ®©
a| 2| G| E
Z|5/2 3
£|9|3| 8
|2 E| o
0|2 o N
888 g%
g jo B ° g S]
Tl @| = o @
<|X| ol =z K
A4 hd % E
Open-source Projects o
> ; gy
search Terms | Retrieve °3
— 1.1 | S ®
Iy 29
= — g®
o o =
5| < 2 S
n e r =
=
(7]
o
o
@
12

Figure 3: SADT Model for Retrieval Process

2014), (Ridao et al., 2001) which may allow us to
find requirement-related information. Following,
using the SADT (Structured Analysis and Design
Technique) (Chen, 1976) we modeled a process to
address our approach. Fig.3 highlights one of the
activities, Retrieve, which points the construction
of this tool.

4.1 The Retrieve Activity

The Retrieve describes the inputs: the domain-
related query (search terms) and the GitHub open-
source projects. With this, it is requested the
projects that match with the query. The con-
straints: our process was designed to be suit-
able for any artifact with natural language descrip-
tions. It was considered the request limits using
the GitHub API*. We took care in backward trace-
ability; thus, once a Readme is in a corpus it is
possible to locate its source on GitHub. A concern
is the quantity of search results limited to 1000,
this fact, made us to think in a situation where the
project 1001 could be the interesting one for an re-
quirements elicitor; therefore, we created heuris-
tics taking advantage of GitHub metadata to im-
prove the recall of results. Finally, we had to deal
with a variety of document extensions (.md, .rtf,
.html, .doc, etc.) and normalize them to .txt before

4GitHub API v3: Rate
https://developer.github.com/v3/#rate-limiting

Limiting.

51

Bestmatch 1500

Most stars 1 2 ~ 1500 2500

Most forks 1 2 1500 2500

Fewest forks 1499 1001 1000 1

inaccessible projects

Fewest stars | 2500 .. -

GitHub results limit

Scenario when GitHub Results = 2500

Figure 4: Querying by combining sorting options

Bestmatch (1000) Most Stars | Most Forks Fewest Stars Fewest Forks

B MS MF FS FF

Figure 5: Organizing GitHub results

a Readme is inserted in the corpus. The unique
situation where a Readme is not retrieved, is when
this is located out of the root of its project. The
outputs: it is expected the corpus of Readmes
in .txt format and the package zipped containing
them.

4.2 Heuristics

In order to bring more than 1000 results through
the search, our tool explored five of the possible
sorts a user may do: best match, most starts,
fewest stars, most forks, fewest forks. Each
sorting becomes a new query. We combine them
to surpass the 1000 results limitation (Fig.4), and
with the current GitHub API we were able to per-
form those five queries in a single task.

There is a possibility of leaving out many
projects (see the cells in gray and red), that is be-
cause, it is shown just the first 1000 results of any
sorting query; after that is not guaranteed the or-
der of projects relevance. We had another con-
cern, which is the project rating given by users,
giving a star or performing a fork, resulting in
projects repeated in any of the sorting operations.
Our heuristic uses a union operation in order to
capture those intersections. Finally, we organize
the corpus in the order shown in Fig.5. As a user
would not be able to get this extra through GitHub
website, we consider we improved the recall of re-
sults.

Y Get readmes from Github X

€ > C (D

corpus-retrieval.herokuapp.com

Corpus Retrieval
of GitHub readmes

music application iphone M Buscar

Figure 6: Web application for corpus retrieval

4.3 Tool Presentation

The tool® presentation (Fig.6) is simple and just
for the purpose to retrieve a corpus of Readmes
given a query. To continue with the GitHub
spirit providing Open-source software (OSS) to
the community, we made available the script® code
and also a complementary script’ developed to
support the performance of the application on web
browsers.

5 Analyzing the Raw Data Retrieved

Our assumption that a corpus of Readmes could be
useful for finding requirements-related informa-
tion is based on knowledge reuse literature as well
as on our own evidence. This premise can be ques-
tionable, as the Readme is a brief user documen-
tation of software projects and may seen hardly a
reliable way for obtaining requirements for your
own project. In fact, The best one can discover
is what features these other projects offer for later
reuse. The usefulness of Readme documents is the
identification of relevant projects, for later explo-
ration of another perspectives (Issues, Commits)
which probably does contain more data with the
stereotypical of requirements. In this regard, we
are looking for the type of reuse that (Goldin and
Berry, 2015) state “Reuse can take place during
any phase of a computed-based system develop-
ment, including during proposal consideration and
marketing analysis, requirements elicitation, re-
quirements analysis, architecture design, code im-
plementation, and testing. .. Thus, reusing require-
ments can be most beneficial, because if it leads to
off-the-shelf reuse of the required product, result-

Shttp://corpus-retrieval.herokuapp.com/
Shttps://github.com/nitanilla/corpus-retrieval
"https://github.com/nitanilla/github-proxy

52

ing in greatest reduction of development effort and
time to market”.

We wanted to test two hypotheses:

Hypothesis 1: A corpus builder of Readmes per-
mits the finding of features using a similar-based
projects approach.

Hypothesis 2: The mined requirements-related-
information is useful for reuse.

For this, we built a corpus for the “music ap-
plication” query with 1206 Readmes and took a
representative sample of 291 Readmes to be read
manually with the aim to find reusable knowledge.
Once some phrases in context with high chances
of being re-used are identified, they were shown
for a Music Aplication Startup.

It is worth noting that the selection of Readmes
was conducted randomly with an script® we cre-
ated for future test.

5.1 Findings

A remarkable finding from our notes is the GitHub
limitation” which leads to not support a phrase
query, resulting in Readmes vaguely related to the
“music application” query. This happens because
some Readmes contained just the word “music”
and others only with“application”. This fact im-
pacts the precision to filter relevant projects within
a corpus created.

As we are investigating patterns to anchor re-
quirements, the manual reading allowed us to see
some patterns motivated by the work of (Arora et
al., 2014). We identified six concurrent patterns
(Table 1) and then we mined them on the entire
corpus (2016 Readmes) to obtain its frequency of
appearance.

To answer hypothesis 1 and 2, we select the
pattern with the lowest rank “allows users to”.
We grouped 861 Readmes with similar file size
(Okb-1kb), and the mining of this pattern using
the package Qdap (Goodrich et al., 2016) for R
project, resulted in 14 Readmes matching within
these Readmes, then a manual extraction of
phrases in context was done. Below we show four
phrases shown to a music application startup!?,
and in italic, the startup assessment.

8hittps://github.com/nitanilla/Random-Readme
9

https://help.github.com/articles/searching-
code/#considerations-for-code-search
Hear: https://www.facebook.com/apphear

Table 1: Requirement Patterns in Readmes

Requirement Pattern In # of Readmes
to provide 77
which can 57
can be used to 43
should be able to 38
that allows you to | 31
allows users to 28

1.- Moment is a web application that stores all
your special memories with the music you love.
By tapping into Spotify’s Web API, Moment
allows users to bookmark music they enjoy in
a journal format and navigate all their previous
memories with music. A good idea to take into
consideration

2.- SoundShack Leverages the Power of Broad-
com’s Latest Wiced chip to Stream HD Audio
to Wifi enabled android devices. This Android
application allows users to syn-chronously stream
music with no lag. User can also asynchronously
manage speaker groupings, giving users the power
to listen to the football game on their living room
speakers and rock out to their patio speakers at
the same time. Being built for the current release.

3.- Powerful web application that allows users
to query music and instantly down-load that
music. The project was done using nodejs and
expressjs. A good idea to take into consideration.

4.- This android application allows users to lis-
ten to a music playlist tailored to them based on
their mood. Their mood is extracted using senti-
ment analysis on diary en-tries in the app. Being
built for the current release.

Notes and Future work. We are testing the
phrases with other two members of the music ap-
plication Startup, with the intention to perceive
how much they differ in points of view as they
have different background profiles. We are also
working on identify more requirement patterns
and test them in different Corpus of Readmes.

6 Conclusion

Mining existing information is becoming a strong
ally in the process of requirements elicitation,
since more and more information is being stored
with open access in the web. GitHub as an open

93

access repository for software projects is a strong
candidate as an information source. However,
to use GitHub information, which is scattered in
thousands of projects, there is a need to compose
a proper corpus, where mining heuristics could be
applied.

This work describes the challenges and what
has been done to build a Requirements Engi-
neering oriented corpus taking GitHub project’s
Readme as a source.

With the results so far, we are more close
to build a way of reusing unstructured, semi-
structured and structured information linked to
code, as to help the task of eliciting requirements-
related information. As such, future work will fo-
cus on mining heuristics and validation of their ap-
plication.

References

C. Arora, M. Sabetzadeh, Briand L. C., and F. Zim-
mer. 2014. Requirement boilerplates: Transition
from manually-enforced to automatically-verifiable
natural language patterns. In Requirements Patterns
(RePa), 2014 IEEE 4th International Workshop on,
pages 1-8.

Peter Pin-Shan Chen. 1976. The entity-relationship
model—toward a unified view of data. ACM
Trans. Database Syst., 1(1):9-36.

Julio Cesar. S. do Prado Leite and A. Freeman. 1991.
Requirements validation through viewpoint resolu-
tion. IEEE Transactions on Software Engineering,
17(12):1253-1269.

Fajar J. Ekaputra, Estefanifa Serral, and Stefan Biffl.
2014. Building an empirical software engineering
research knowledge base from heterogeneous data
sources. In Proceedings of the 14th International
Conference on Knowledge Technologies and Data-
driven Business, i-KNOW ’14, pages 13:1-13:8.
ACM.

Leah Goldin and Daniel M. Berry. 2015. Reuse of
requirements reduced time to market at one indus-
trial shop: a case study. Requirements Engineering,
20(1):23-44.

Bryan Goodrich, D Kurkiewicz, and Tyler Rinker.
2016. Bridging the gap between qualitative data and
quantitative analysis.

Georgios Gousios. 2013. The ghtorent dataset and
tool suite. In Proceedings of the 10th Working Con-
ference on Mining Software Repositories, MSR *13,
pages 233-236, Piscataway, NJ, USA. IEEE Press.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. In Proceedings

of the 18th Annual International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval, SIGIR *95, pages 68-73, New York,
NY, USA. ACM.

Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Alti-
gran S. da Silva, and Juliana S. Teixeira. 2002. A
brief survey of web data extraction tools. SIGMOD
Rec., 31(2):84-93.

Lynne M. Markus. 2001. Toward a theory of knowl-
edge reuse: Types of knowledge reuse situations and
factors in reuse success. Journal of Management In-
formation Systems, 18(1):57-93.

Cade Metz. 2016. Triple play: Githubs code now lives
in three places at once. Wired, Last accessed 08-14-
2016.

Roxana L.Q. Portugal, Julio Cesar. S. do Prado Leite,
and E. Almentero. 2015. Time-constrained require-
ments elicitation: reusing github content. In Just-
In-Time Requirements Engineering (JITRE), 2015
IEEE Workshop on, pages 5-8. IEEE.

Antoinette Renouf. 2003. Webcorp: providing a re-
newable data source for corpus linguists. Language
and Computers, 48(1):39-58.

M. Ridao, J. Doorn, and Julio Cesar. S. do Prado Leite.
2001. Domain independent regularities in scenar-
i0s. In Requirements Engineering, 2001. Proceed-
ings. Fifth IEEE International Symposium on, pages
120-127.

J. Sinclair. 2005. Corpus and Text - Basic Princi-
ples in Developing Linguistic Corpora: a Guide to
Good Practice. Appendix: How to build a Corpus.
Oxford-Oxbow Books.

54

