
Identifying and Validating Ontology Mappings by
Formal Concept Analysis

Mengyi Zhao1 and Songmao Zhang2

1,2Institute of Mathematics, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, P. R. China

1myzhao@amss.ac.cn, 2smzhang@math.ac.cn

Abstract. As a well developed mathematical model for analyzing individuals
and structuring concepts, Formal Concept Analysis (FCA) has been applied to
ontology matching (OM) tasks since the beginning of OM research, whereas on-
tological knowledge exploited in FCA-based methods is limited. The study in
this paper aims to empowering FCA with as much as ontological knowledge as
possible for identifying and validating mappings across ontologies. Our method,
called FCA-Map, constructs three types of formal contexts and extracts mappings
from the lattices derived. Firstly, the token-based formal context describes how
class names, labels and synonyms share lexical tokens, leading to lexical map-
pings (anchors) across ontologies. Secondly, the relation-based formal context
describes how classes are in taxonomic, partonomic and disjoint relationships
with the anchors, leading to positive and negative structural evidence for validat-
ing the lexical matching. Lastly, after incoherence repair, the positive relation-
based context can be used to discover additional structural mappings. Evaluation
on anatomy track and large biomedical ontologies track of the 2015 Ontology
Alignment Evaluation Initiative (OAEI) campaign demonstrates the effectiveness
of FCA-Map and its competitiveness with 2015 OAEI top-ranked OM systems.
Keywords: ontology matching, Formal Concept Analysis, concept lattice.

1 Introduction

In the Semantic Web, ontologies model domain conceptualizations so that applications
built upon them can interoperate with each other by sharing the same meanings. Such
knowledge sharing and reuse can be severely hindered by the fact that ontologies for
the same domain are often developed for various purposes, differing in coverage, gran-
ularity, naming, structure and many other aspects. Ontology matching (OM) techniques
aim to alleviate the heterogeneity by identifying correspondences across ontologies.
Ontology matching can be performed at the element level and the structure level [4].
The former considers ontology classes and their instances independently, such as string-
based and language-based techniques, whereas the latter exploits relations among en-
tities, including graph-based and taxonomy-based techniques. Most ontology matching
systems [2,3,5,9,11] adopt both element and structure level techniques to achieve better
performance.

Among the first batch of OM algorithms and tools proposed in the early 2000s,
FCA-Merge [13] distinguished in using Formal Concept Analysis (FCA) formalism to



derive mappings from classes sharing textual documents as their individuals. Proposed
by Rudolf Wille [14], FCA is a well developed mathematical model for analyzing in-
dividuals and structuring concepts. FCA starts with a formal context consisting of a
set of objects, a set of attributes, and their binary relations. Concept lattice, or Galois
lattice, can be computed based on formal context, where each node represents a formal
concept composed of a subset of objects (extent) with their common attributes (inten-
t). The extent and the intent of a formal concept uniquely determine each other in the
lattice. Moreover, the lattice represents a concept hierarchy where one formal concept
becomes sub-concept of the other if its objects are contained in the latter. FCA can nat-
urally be applied to ontology construction [12], and is also widely used in data analysis,
information retrieval, and knowledge discovery.

Following the steps of FCA-Merge, several OM systems continued to use FCA as
well as its alternative formalisms, exploiting different entities as the sets of objects
and attributes for constructing formal contexts [1, 8, 15]. FCA-OntMerge [8], for ex-
ample, utilizes the classes of ontologies and their attributes to form its formal context,
whereas in [1] the formal context is composed of ontology classes as objects and terms
of a domain-specific thesaurus as attributes. Different types of formal contexts decide
the information used for ontology matching, and we observed that some intrinsic and
essential knowledge of ontology has not been involved yet, including both textual in-
formation within classes (e.g., class names, labels, and synonyms) and relationships
among classes (e.g., ISA, sibling, and disjointedness relations).

This motivated the study in this paper, i.e., empowering FCA with as much as on-
tological information as possible for identifying and validating mappings across on-
tologies. Our method, called FCA-Map, generates three types of formal contexts and
extracts mappings from the lattices derived. Firstly, the token-based formal context de-
scribes how class names, labels and synonyms share lexical tokens, leading to lexical
mappings (anchors) across ontologies. Secondly, the relation-based formal context de-
scribes how classes are in taxonomic, partonomic and disjoint relationships with the
anchors, leading to positive and negative structural evidence for validating the lexi-
cal matching. Lastly, after incoherence repair, the positive relation-based context can
be used to discover additional structural mappings. Evaluation on anatomy track and
large biomedical ontologies track of the 2015 Ontology Alignment Evaluation Initiative
(OAEI) campaign demonstrates the effectiveness of FCA-Map and its competitiveness
with 2015 OAEI top-ranked OM systems.

2 Preliminaries

Formal Concept Analysis (FCA) is a mathematical theory of data analysis using formal
contexts and concept lattices. Formal context is defined as a triple K := (G,M, I),
where G is a set of objects, M a set of attributes, and I a binary relation between G
and M in which gIm holds, i.e., (g,m) ∈ I , reads: object g has attribute m [6]. Formal
contexts are often illustrated in binary tables, as exemplified by Table 1, where rows
correspond to objects, columns to attributes, and a cell is marked with “×” if the object
in its row has the attribute in its column.



Definition 1. [6] For subsets of objects and attributes A ∈ G and B ∈M , derivation
operators are defined as follows:

A′ = {m ∈M | gIm for all g ∈ A}
B′ = {g ∈ G | gIm for all m ∈ B}

A′ denotes the set of attributes common to the objects in A; B′ denotes the set of
objects which have all the attributes in B.

A formal concept of context K is a pair (A,B) consisting of extentA ∈ G and intent
B ∈ M such that A = B′ and B = A′. B(K) denotes the set of all formal concepts
of context K. The partial order relation, namely subconcept-superconcept-relation, is
defined as:

(A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2(⇔ B1 ⊇ B2)

Relation ≤ is called a hierarchical order of formal concepts. B(K) ordered in this
way is exactly a complete lattice, called the concept lattice and denoted by B(K).
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elephant × ×
dolphin × × × ×
porpoise × × × ×

hawk × × ×
octopus × ×

Table 1: An example formal
context Ke.
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Fig. 1: Concept lattice B(Ke)
with simplified labelling.

carnivorous vertebrate

aquatic mammal

flying

elephanthawk

dolphine
porpoise

octopus

Fig. 2: GSH of concept lat-
tice B(Ke).

For an object g ∈ G, its object concept γg := ({g}′′, {g}′) is the smallest concept
in B(K) whose extent contains g. In other words, object g can generate formal concept
γg. Symmetrically, for an attribute m ∈M , its attribute concept µm := ({m}′, {m}′′)
is the greatest concept in B(K) whose intent contains m. In other words, object m
can generate formal concept µm. For a formal concept (A,B), its simplified extent
(simplified intent), denoted byKex (Kin), is a minimal description of the concept. Each
object (attribute) in Kex ( Kin ) can generate the formal concept (A,B). As a matter of
fact, Kex dose not appear in any descendant of (A,B) and Kin dose not appear in any
ancestor of (A,B). Figure 1 shows the concept lattice of context Ke in Table 1, where
each formal concept is labeled by its simplified extent and intent.

Galois Sub-hierarchy (GSH) introduced by [7] is a sub-structure of concept lattice.
Only concepts carrying information are retained in GSH, meaning that GSH solely
contains formal concepts that introduce new objects or new attributes and excludes
formal concepts whose Kex and Kin are both empty. The ordering of formal concepts
in GSH is the same as in the original concept lattice. Removing the formal concepts
without labels in Figure 1 leads to the GSH shown in Figure 2.



3 The FCA-Map Method

Given two ontologies, FCA-Map builds formal contexts and uses the derived concept
lattices to cluster the commonalities among ontology classes, at lexical level and struc-
tural level, respectively. Concretely, FCA-Map performs step-by-step as follows.

1. Acquiring anchors lexically. The token-based formal context is constructed, and
from its derived concept lattice, a group of lexical anchors A across ontologies can
be extracted.

2. Validating anchors structurally. Based on A , the relation-based formal context
is constructed, and from its derived concept lattice, positive and negative structural
evidence of anchors can be extracted. Moreover, an enhanced alignmentA′ without
incoherences among anchors is obtained.

3. Discovering additional matches. Based on A′, the positive relation-based for-
mal context is constructed, and from its derived concept lattice, additional matches
across ontologies can be identified.

We take two anatomical ontologies, Adult Mouse Anatomy1 (MA) and the anatomy
subset of National Cancer Institute Thesaurus2 (NCI), to demonstrate our method. MA
is a structured controlled vocabulary describing the anatomical structure of the adult
mouse, whereas NCI describes the human anatomy for the purpose of cancer research.
The versions used are the OWL files of these two ontologies provided by the 2015
OAEI. For MA and NCI, the token-based and relation-based formal contexts are of
large-size, resulting in complex structures of the concept lattices derived. In order to
avoid generating redundant information, GSH, a polynomial-sized representation of
concept lattice that preserves the most pertinent information, is utilized in FCA-Map.

3.1 Constructing the token-based formal context to acquire lexical anchors

Most OM systems rely on lexical matching as initiation due to the fact that classes
sharing names across ontologies quite likely represent the same entity in the domain
of interest. FCA-Map, rather than using lexical and linguistic analysis, generates a for-
mal context at the lexical level and obtains mappings from the lattice derived from the
context.

The token-based formal context Klex := (Glex,Mlex, Ilex) is described as follows.
Names of ontology classes as well as their labels and synonyms, when available, are
exploited after normalization that includes inflection, tokenization, stop word elimina-
tion3, and punctuation elimination. In Klex,Glex is the set of strings each corresponding
to a name, label, or synonym of classes in two ontologies, Mlex is the set of tokens in
these strings, and binary relation (g,m) ∈ Ilex holds when string g contains token m,

1 http://www.informatics.jax.org/glossary/adult ma dictionary
2 https://ncit.nci.nih.gov/ncitbrowser/
3 Although eliminating the stop words carrying logical meanings may affect the precision, its

benefit in recall is more advantageous according to our experiments.

http://www.informatics.jax.org/glossary/adult_ma_dictionary
https://ncit.nci.nih.gov/ncitbrowser/


or a synonym4 or lexical variation5 of m. Table 2 shows Klex of a small part of MA
and NCI, and its derived concept lattice in GSH form is displayed in Figure 3. For
each formal concept derived, in addition to strings in its extent, we are also interested
in the classes that these strings come from, called class-origin extent. For example, in
Figure 3, the class-origin extent of formal concept by node 7 is {MA:mammary gland
fluid/secretion, NCI:Breast Fluid or Secretion} since in NCI, “Mammary Gland Fluids
and Secretions” is a synonym of class NCI:Breast Fluid or Secretion.
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MA:palatine gland × ×
MA:adrenal gland zona fasciculata × × × ×
MA:adrenal gland zona reticularis × × × ×
MA:mammary gland fluid/secretion × × × ×
NCI:Palatine Salivary Gland × × ×
NCI:Fasciculata Zone × ×
NCI:Reticularis Zone × ×
NCI:Mammary Gland Fluids and Secretions × × × ×

Table 2: Token-based formal context Klex of a small part of MA and NCI.

An essential property of FCA is the duality between a set of objects and their at-
tributes. The more attributes demanded, the fewer objects can meet the requirements.
In the case of the token-based formal concept, the more common tokens appearing in
its intent, the fewer strings the extent contains, and the more possibly for the classes
in class-origin extent to be matched. This is to say that cardinality of the extent can
reflect how similar the strings are, thus classes from different source ontologies in a
smaller-sized class-origin extent can be considered as a mapping with higher confi-
dence. Practically, we restrict our attention to formal concepts whose simplified extent
or class-origin extent contains exactly two strings or classes across ontologies, and ex-
tract two types of lexical anchors, namely Type I anchor for the exact match, and Type
II anchor for the partial match, respectively. Of note, on the other hand, cardinality of
the intent cannot be used to measure the similarity of strings. For example, MA:nerve
and NCI:Nerve, which is a match, only share one token, whereas MA:left lung respira-
tory bronchiole and NCI:Right Lung Respiratory Bronchiole, not a match, share three
tokens.

Type I anchor. Simplified extent Kex of the formal concept contains exactly two
strings from classes across ontologies. This indicates that the two strings are com-
posed of the same or synonymous tokens, thus the corresponding classes are extract-
ed to be a match, as exemplified by (MA : mammary gland fluid/secretion, NCI :
Breast Fluid or Secretion) through formal concept of node 7 in Figure 3 whose Kex

has two strings, one from MA and the other NCI.
Type II anchor. The class-origin extent of the formal concept contains exactly t-

wo classes across ontologies and simplified extent Kex contains strings from at most

4 Sub-Term Mapping Tools (https://lsg2.nlm.nih.gov/LexSysGroup/Projects/stmt/2013+/web/
index.html) are used to access synonyms.

5 SPECIALIST Lexicon (https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/
index.html) of UMLS is used to access lexical variations.

https://lsg2.nlm.nih.gov/LexSysGroup/Projects/stmt/2013+/web/index.html
https://lsg2.nlm.nih.gov/LexSysGroup/Projects/stmt/2013+/web/index.html
https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/index.html
https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/index.html
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Fig. 3: Concept lattice in GSH with simplified labeling derived from Klex in Table 2.

one source ontology. Here the strings share tokens in the intent rather than composed
of the same or synonymous tokens. For example, (MA:adrenal gland zona fasciculata,
NCI:Fasciculata Zone) is extracted from node 2 in Figure 3, due to the common token
“fasciculata” which exists solely in these two classes. And (MA:palatine gland, N-
CI:Palatine Salivary Gland) is identified as an anchor from node 6, due to the common
tokens “palatine” and “gland” which co-exist solely in these two classes.

3.2 Constructing the relation-based formal context to validate lexical anchors

Structural relationships of ontologies are exploited to validate the matches obtained at
the lexical level. One of our previous studies [16] proposed using positive and negative
structural evidence among anchors for the purpose of validation. More precisely, classes
of one anchor sharing relationships to classes in another anchor can be seen as their
respective positive evidence. On the other hand, negative structural evidence refers to
the conflict based on the disjointedness relationships between classes. In FCA-Map, we
build the relation-based formal context to obtain both positive and negative structural
evidence for lexical anchors. Both explicitly represented and inferred semantic relations
are used in our method.
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MA:ligament × ×
MA:periodontal ligament × × ×
MA:auricular ligament × × ×
MA:adipose tissue ×
MA:larynx ligament × × ×
NCI:Ligament ×
NCI:Periodontium × × ×
NCI:Broad Ligament × × ×
NCI:Adipose Tissue ×
NCI:Laryngeal Ligament × × ×

Table 3: Relation-based formal context Krel of a small part of MA and NCI.



The relation-based formal context Krel := (Grel,Mrel, Irel) is described as fol-
lows. Classes in two source ontologies are taken as object set Grel, and lexical anchors
prefixed with different relational labels are taken as attribute setMrel. In the case of MA
and NCI, four kinds of relationships are considered, ISA, SIBLING-WITH, PART-OF,
and DISJOINT-WITH, labeled by “(ISA)”, “(SIB)”, “(PAT)”, and “(I-D)” (or “(D-I)”),
respectively. Binary relation (g,m) ∈ Irel holds if g has the corresponding relationship
(as in the prefix ofm) with the class from the same source ontology as g in the anchor of
m. The relation-based formal context Krel of a small part of MA and NCI is displayed
in Table 3. For instance, MA:periodontal ligament and NCI:Periodontium are subclass-
es of MA:ligament and NCI:Ligament, respectively, thus (MA:periodontal ligament,
(ISA)(MA:ligament, NCI:Ligament)) ∈ Irel and (NCI:Periodontium, (ISA)(MA: lig-
ament, NCI:Ligament)) ∈ Irel hold. Moreover, MA:adipose tissue is a subclass of
MA:organ system whereas NCI:Adipose Tissue is disjoint with NCI:Organ System,
thus (MA:adipose tissue, (I-D)(MA:organ system, NCI:Organ system)) ∈ Irel and
(NCI:Adipose Tissue, (I-D)(MA:organ system, NCI:Organ system)) ∈ Irel hold.

1
MA:adipose tissue
NCI:Ligament 
NCI:Adipose Tissue 

(I-D)(MA:organ system, NCI:Organ System)

MA:ligament

(SIB)(MA:adipose tissue, NCI:Adipose Tissue)

(ISA)(MA:ligament, NCI:Ligament )

(SIB)(MA:larynx ligament, NCI:Laryngeal Ligament )

MA:periodontal ligament
MA:auricular ligament

NCI:Periodontium
NCI:Broad Ligament (PAT)(MA:larynx, NCI:Larynx )

MA:larynx ligament
NCI:Laryngeal Ligament

2 3

4 5

Fig. 4: GSH of Krel with simplified labeling.

The derived concept lattice in GSH form of Krel of a small part of MA and NCI is
illustrated in Figure 4. Formal concepts whose extents include both classes in some an-
chors indicate structural evidence. Such anchors are positive evidence to anchors with
label“(ISA)”, “(SIB)” or “(PAT)” in the intent, and vice versa. Conversely, they are
negative evidence to anchors with label “(I-D)” or “(D-I)” in the intent, and vice versa.
In this way, positive and negative structural evidence set of each anchor a can be ob-
tained, denoted by P (a) and N(a), respectively. For example, in the extent of node 3
in Figure 4, (MA:periodontal ligament, NCI:Periodontium) and (MA:larynx ligamen-
t, NCI:Laryngeal Ligament), two anchors acquired lexically, are positive evidences to
anchor (MA:ligament, NCI:Ligament) with label “(ISA)” in the intent, and negative
evidences to anchor (MA:organ system, NCI:Organ System) with label “(I-D)”. The
support degree and incoherence degree of each anchor are the cardinality of its positive
and negative evidence set, respectively.

Now we can utilize all the positive evidence sets P and negative evidence sets N
to eliminate incorrect lexical anchors and retain the correct ones. There are two steps
conducted one-by-one as follows.

Incoherence repairing. The negative evidence leads to incoherency among anchors,
for which FCA-Map repairs in a greedy way, i.e., eliminating the incoherence-causing



anchors iteratively untilN becomes empty. At each iteration, anchor a having the least
negative evidence set, i.e., the smallest incoherence degree, is selected. For every an-
chor a′ in N(a), if incoherence degree of a′ is greater than a, eliminate a′; otherwise,
compare the support degree of a and a′, and eliminate the one with smaller support
degree.

Anchor screening. Anchors having no positive structural evidence according to the
updated P are either caused by the structural isolatedness of classes, or simply incorrect
mismatches. FCA-Map screens anchors based on both lexical and structural evidence,
where Type II anchors without positive evidence are eliminated.

3.3 Constructing the positive relation-based formal context to discover
additional matches

After incoherence repair and screening, anchors retained are those supported both lexi-
cally and structurally. Based on the enhanced alignment, FCA-Map goes further to build
the positive relation-based formal context aiming to identify new, structural mappings.
The way positive relation-based formal context K′rel constructed is similar to Krel, i,e.,
using classes in two source ontologies as object set and anchors prefixed with rela-
tionship labels as attribute set. In the case of MA and NCI, five kinds of relationships
are considered, ISA, SUPERCLASS-OF, SIBLING-WITH, PART-OF, and HAS-PART,
where disjointedness relationship is no longer necessary. For the derived formal con-
cepts, we restrict our attention to those with exactly two classes across ontologies in the
simplified extent. Although most of the mappings extracted this way have already been
identified at the lexical level, new additional matches emerge, as exemplified by (MA:
hindlimb bone, NCI: Bone of the Lower Extremity).

4 Evaluation

To demonstrate the effectiveness of FCA-Map, evaluation is performed on two pairs of
real-world ontologies, Adult Mouse Anatomy (2,744 classes) and the anatomy subset
of NCI Thesaurus (3,304 classes); and the Foundational Model of Anatomy (3,696
classes) and NCI (6,488 classes), respectively, from anatomy track and large biomedical
ontologies track of OAEI 2015. FCAlib6 is used to derive concept lattices (GSH) from
formal contexts. It is an open-source, extensible library for FCA tool developers. FCA-
Map is implemented in Java and the experiments were conducted in a PC with Intel
i7 (3.60GHz) and 8GB RAM. It took 166 seconds and 425 seconds, respectively, for
FCA-Map to finish the MA-NCIAnat. and the FMA-NCI matching.

4.1 Anchors obtained

The results of lexical matching by FCA-Map are summarized in Table 4, and structural
matching is presented in Table 5 where the upper part is about structural validation and
the lower part about extra discovered structural mappings. Columns “Corr.”, “Incor.”,
and “Unkn.” indicate the number of correct, incorrect, and unknown mappings, respec-
tively, as categorized by OAEI where “unknown” mappings will neither be considered
as correct nor incorrect when evaluating the alignment, but will simply be ignored.



MA-NCIAnat. FMA-NCI
Types of anchors Total Corr. Incor. P Total Corr. Unkn. Incor. P

Type I 1, 223 1, 163 60 95.1% 2, 759 2, 416 248 95 96.2%

Type II 172 113 59 65.7% 131 60 4 67 47.2%

Total 1, 395 1, 276 119 91.5% 2, 890 2, 476 252 162 93.9%

Table 4: Results of lexical anchors.

MA-NCIAnat. FMA-NCI
Types of anchors Total Corr. Incor. P Total Corr. Unkn. Incor. P

Type I 1, 220 1, 161 59 95.2% 2, 703 2, 414 208 81 96.8%

Type II 125 98 27 78.4% 63 46 2 15 75.4%

Total 1, 345 1, 259 86 93.6% 2, 766 2, 460 210 96 96.2%

Additional 16 10 6 62.5% 25 3 0 22 12%
Total 1, 361 1, 269 92 93.2% 2, 791 2, 463 210 118 95.4%

Table 5: Results of enhanced alignment.

One can see that most of the lexical anchors are of Type I, i.e., the name, synonym
or label of one class is the same as another class. For example, MA:cortical layer II
and NCI:External Granular Layer are extracted as an anchor because in MA, “external
granular layer” is a synonym of MA:cortical layer II. Incorrect Type I anchors mainly
come from three cases. (1) Although having the same name, classes in anchor do not
represent equivalent entity. For example, MA:organ system and NCI:Organ System, al-
though sharing matched subclasses, have respective additional different subclasses. (2)
Mismatched classes may be considered to be a mapping based on their synonyms or la-
bels. For example, anchor (MA:cerebellum lobule I, NCI:Lingula ) (through synonym
“lingula” in MA) is a mismatch because the former is a part of cerebellar vermis and
the latter a part of left lung. (3) Using external lexicon may introduce incorrect anchors.
For example, MA:back matches NCI:Dorsum because “back” and “dorsum” are syn-
onymous according to the lexicon used in FCA-Map. This is a mismatch because in
MA back is a part of trunk, while in NCI dorsum refers to outer surface of scapula.

Type II lexical anchors have lower precisions, reflecting the unstable performance
of relying on names sharing tokens to derive commonalities of classes. Nevertheless,
many incorrect anchors can be eliminated in the validation process, causing the preci-
sion to increase, for instance from 47.2% to 75.4% for Type II anchors in FMA-NCI.
Take Type II anchor (MA:retina ganglion cell layer, NCI: Retinal Ganglion Cell) for
example. It is eliminated in incoherence repair because of its conflict with (MA:retina
layer, NCI: Retina Layer), of which the support degree is 0 and 8, respectively. The
structural validation based on the relation-based concept lattice in FCA-Map can en-
sure to improve the precision of lexical mappings.

4.2 Comparing with other lexical matching methods

Among many lexical matching methods such as string equality, substring test, and edit
distance, TFIDF-based methods [4] are of particular interest because similarly to FCA-
Map they are based on tokens. Adopted in OM systems YAM++ [3] and GMap [10],

6 https://julianmendez.github.io/fcalib/

https://julianmendez.github.io/fcalib/


TFIDF measures simultaneously how often the tokens appear in one class name and
how much information the tokens bring across names of classes from different ontolo-
gies. We compare the performance of lexical matching of FCA-Map with TFIDF solely
using the class names of MA and NCI without any external resources. The result is
shown in Figure 5, where F-measure of FCA-Map is higher than TFIDF for any thresh-
old.
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Fig. 5: Comparing with TFIDF.

Compared with the TFIDF-based methods, FCA-Map emphasizes on the particular
commonality of two strings, and there is no need for setting thresholds which is re-
quired in TFIDF for selecting matches. This can be illustrated by MA: tectum and NCI:
tectum mesencephali. They are not matched according to TFIDF because token “mes-
encephali” has a high inverse-document-frequency (it solely appears in this string) and
token “tectum” is ignored (it solely appears in the two strings). On the other hand, this
correspondence can be derived in our method since there is a formal concept with intent
{“tectum”} and extent exactly containing these two strings. Moreover, our method can
avoid the mistake of locally measuring frequency of tokens. For instance, MA: common
iliac artery and NCI: Right Common Iliac Artery have a relatively high similarity (0.86)
according to TFIDF, while this pair is not extracted by FCA-Map. There are many other
class names share tokens “common”, “iliac”, and “artery”, such as MA: Left Common
Iliac Artery and NCI: Right Common Iliac Artery Branch, therefore what the two strings
in comparison share are not unique enough for them to be chosen as a match. Indeed,
our method features in detecting the particular commonality solely belongs to the names
compared while ignoring the commonality shared by many other names.

4.3 Comparing with OAEI 2015 top-ranked systems

A comparison between FCA-Map and OAEI 2015 top-ranked systems is shown in Table
6. For MA-NCIAnat., the precision, recall and F-measure of FCA-Map ranks second,
fifth, and forth, respectively. Results of FMA-NCI are encouraging, with both recall
and F-measure tie for first. Moreover, FCA-Map is capable of extracting mappings that
cannot be identified by other systems, as exemplified by Type II anchors (MA:adrenal
gland zona reticularis, NCI:Reticularis Zone), (MA:ileocaecal junction, NCI:Ileocecal
Valve). These mappings are identified in the token-based concept lattice and validated



in the relation-based concept lattice. The tokens shared by two classes in these map-
pings are unique to their names. The lexical matching method of FCA-Map is suitable
for domain ontologies having class names, labels, or synonyms from domain-specific
vocabulary, whereas its performance can be relatively poor for general-purpose ontolo-
gies whose terminologies are more varied and ambiguous, like those in the conference
track of OAEI where FCA-Map ranked at the average level. Additionally, for negative
evidence to be identified, our method requires that at least one source ontology declares
disjointedness relationships between classes.

MA-NCIAnat. FMA-NCI
Systems P R F P R F

XMAP-BK - - - 0.971 0.902 0.935

AML 0.956 0.931 0.944 0.960 0.899 0.928

LogMap 0.918 0.846 0.88 0.949 0.901 0.924

LogMapBio 0.882 0.901 0.891 0.926 0.917 0.921

XMAP 0.928 0.865 0.896 0.970 0.784 0.867

FCA-Map 0.932 0.837 0.882 0.954 0.917 0.935

Table 6: Comparing with OAEI 2015 top-ranked systems.

5 Discussion and Conclusions

Discovering complex mappings structurally. As shown in Table 5, structural map-
pings identified by the positive relation-based concept lattice are limited. Nevertheless,
in the lattice we noticed that the simplified extents of some formal concepts contain
more than two classes from different source ontologies, meaning these classes share
the same structural relationships to anchors in the intent. Such classes may compose a
complex mapping, as elaborated in the following.

1. One-to-group mappings. The simplified extent contains only one class from one
source ontology and multiple classes from the other source ontology. For example,
MA:inferior suprarenal vein can be mapped to the group of concepts {NCI:Left
Suprarenal Vein, NCI:Right Suprarenal Vein} as the three concepts are contained
within one simplified extent that has no more classes. This one-to-group mapping
comes from the difference in granularity between MA and NCI.

2. Group-to-group mappings. The simplified extent contains multiple classes from d-
ifferent source ontologies, respectively. For example, two groups of concepts {MA:
sacral vertebra 1, MA:sacral vertebra 2, MA:sacral vertebra 3, MA:sacral verte-
bra 4} and {NCI:S1 Vertebra, NCI:S2 Vertebra, NCI:S3 Vertebra, NCI:S4 Vertebra,
NCI:S5 Vertebra} can be mapped as these classes are contained in one simplified
extent that has no more classes. This group-to-group mapping represents the differ-
ence between mouse and human anatomy.

Compared with other FCA-based OM systems, the study in this paper is more com-
prehensive as an attempt to push the envelope of the Formal Concept Analysis formal-
ism in ontology matching tasks. Three types of formal contexts are constructed one-
by-one, and their derived concept lattices are used to cluster the commonalities among



classes at lexical and structural level, respectively. Experiments on large, real-world
domain ontologies show promising results and reveal the power of FCA. Our future
work would introduce more elements of ontology into FCA-Map including properties,
individuals, and logical constructors and axioms. Optimization techniques for handling
large-scale FCA contexts will also be worth exploring.
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