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Abstract. This work focuses on the definition of a consequence relation
between contexts with which we can decide whether certain contextual
information is a logical consequence from a set of contexts considered as
underlying hypotheses.

1 Introduction

In real life, one often faces situations in which the underlying knowledge is
given as a set of tables which can be interpreted as formal contexts, and we
should decide on whether certain contextual information is a consequence
from them.

This problem clearly resembles the notion of a formula being a logical
consequence of a set of hypotheses, and suggests the possibility or conve-
nience of defining a formal (mathematical) notion of logical consequence
between contexts.

The only attempts to introduce logical content within the machinery
of Formal Concept Analysis (FCA), apart from its ancient roots anchored
in the Port-Royal logic, are the so-called logical information systems and
the logical concept analysis [2, 9].

Of course, different links between FCA and logic have been studied
but, to the best of our knowledge, the problem considered in this paper has
not been explicitly studied in the literature. Nevertheless, it is worth to
remark that the concluding section of [6] states that dual bonds could be
given a proof-theoretical interpretation in terms of consequence relations.

In the present work, we consider the fact that the category ChuCors of
contexts and Chu correspondences is *-autonomous, and hence a model of
linear logic, in order to build some preliminary links with the conjunctive
fragment of this logic.
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2 Preliminaries

In order to make the manuscript self-contained, the fundamental notions
and their main properties are recalled in this section.

2.1 Context, concept and concept lattice

Definition 1. A formal context is any triple C = 〈B,A,R〉 where B and
A are finite sets and R ⊆ B × A is a binary relation. It is customary to
say that B is a set of objects, A is a set of attributes and R represents
a relation between objects and attributes.

Given a formal context 〈B,A,R〉, the derivation (or concept-forming)
operators are a pair of mappings ↑ : 2B → 2A and ↓ : 2A → 2B such that
if X ⊆ B, then ↑X is the set of all attributes which are related to every
object in X and, similarly, if Y ⊆ A, then ↓Y is the set of all objects
which are related to every attribute in Y .

Definition 2. A formal concept of a formal context C = 〈B,A,R〉 is a
pair of sets 〈X,Y 〉 ∈ 2B × 2A which is a fixpoint of the pair of concept-
forming operators, namely, ↑X = Y and ↓Y = X. The object part X
is called the extent and the attribute part Y is called the intent. The set
of all formal concepts of a context C will be denoted by CL(C), set of all
extents or intents of C will be denoted by Ext(C) or Int(C) respectively.

2.2 Intercontextual structures

Two main constructions have been traditionally considered in order to
relate two formal contexts: the bonds and the Chu correspondences.

Definition 3. Let C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 be two formal
contexts. A bond between C1 and C2 is any relation β ∈ 2B1×A2 such
that, when interpreted as a table, its columns are extents of C1 and its
rows are intents of C2. All bonds between such contexts will be denoted by
Bonds(C1, C2).

Another equivalent definition of bond between C1 and C2 defines it
as any relation β ∈ 2B1×A2 such that Ext(〈B1, A2, β〉) ⊆ Ext(C1) and
Int(〈B1, A2, β〉) ⊆ Int(C2)

Dual bonds between C1 and C2 are bonds between C1 and transposition
of C2. Transposition of any context C = 〈B,A,R〉 is defined as a new
context C∗ = 〈A,B,Rt〉 with Rt(a, b) holds iff R(b, a) holds.



The notion of Chu correspondence between contexts can be seen as
an alternative inter-contextual structure which, instead, links intents of
C1 and extents of C2.
Definition 4. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two
formal contexts. A Chu correspondence between C1 and C2 is any pair
ϕ = 〈ϕL, ϕR〉 of mappings ϕL : B1 → Ext(C2) and ϕR : A2 → Int(C1)
such that for all (b1, a2) ∈ B1 × A2 it holds that ↑2

(
ϕL(b1)

)
(a2) = ↓1(

ϕR(a2)
)
(b1).

All Chu correspondences between such contexts will be denoted by
Chu(C1, C2).

The notions of bond and Chu correspondence are interchangeable;
specifically, we can consider the bond βϕ associated to a Chu correspon-
dence ϕ from C1 to C2 defined for b1 ∈ B1, a2 ∈ A2 as follows

βϕ(b1, a2) = ↑2
(
ϕL(b1)

)
(a2) = ↓1

(
ϕR(a2)

)
(b1)

Similarly, we can consider the Chu correspondence ϕβ associated to a
bond ρ defined by the following pair of mappings:

ϕβL(b1) = ↓2
(
β(b1)

)
ϕβR(a2) = ↑1

(
βt(a2)

)
for all a2 ∈ A2 and o1 ∈ B1

The set of all bonds (resp. Chu correspondences) between two formal
contexts endowed with the ordering given by set inclusion is a complete
lattice. Moreover, both complete lattices are dually isomorphic.

2.3 Categorical products in ChuCors

Recall that it is possible to consider a category in which the objects are
formal contexts and morphisms between two contexts are the Chu cor-
respondences between them. This category, denoted ChuCors, has been
proved to be *-autonomous and equivalent to the category of complete
lattices and isotone Galois connections, more results on this category and
its L-fuzzy extensions can be found in [4, 3, 5, 7].

Cartesian product in ChuCors The following definition provides a
specific construction of the notion of (binary) cartesian product in the
category ChuCors.

Definition 5. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two
formal contexts. The product of such contexts is a new formal context
C1 × C2 = 〈B1 ]B2, A1 ]A2, R1×2〉 where the relation R1×2 is given by

((i, b), (j, a)) ∈ R1×2 if and only if
(
(i = j)⇒ (b, a) ∈ Ri

)



for any (b, a) ∈ Bi ×Aj and (i, j) ∈ {1, 2} × {1, 2}.

If we recall the well-known categorical theorem which states that if
a category has a terminal object and binary product, then it has all
finite products, we need to prove just the existence of a terminal object
(namely, the nullary product) in order to prove the category ChuCors to
be Cartesian.

Any formal context of the form 〈B,A,B × A〉 where the incidence
relation is the full Cartesian product of the sets of objects and attributes
is (isomorphic to) the terminal object of ChuCors. Such a formal context
has just one formal concept 〈B,A〉; hence, from any other formal context
there is just one Chu correspondence to 〈B,A,B ×A〉.

The explicit construction of a general product (not necessarily either
binary or nullary) is given below:

Definition 6. Let {Ci}i∈I be an indexed family of formal contexts Ci =
〈Bi, Ai, Ri〉, the product

∏
i∈I Ci is the formal context given by

∏
i∈I
Ci =

〈⊎
i∈I

Bi,
⊎
i∈I

Ai, R×I

〉

where
(
(k, b), (m, a)

)
∈ R×I ⇔

(
(k = m)⇒ (b, a) ∈ Rk

)
.

It is worth to note that the arbitrary product of contexts commutes
with both the concept lattice construction and the bonds between con-
texts. These two results are explicitly stated below.

Lemma 1. Let Ci = 〈Bi, Ai, Ri〉 be a formal context for i ∈ I. It holds
that CL(

∏
i∈I Ci) is isomorphic to

∏
i∈I CL(Ci).

Lemma 2. Let I and J be two index sets, and consider the two sets of
formal contexts {Ci}i∈I and {Dj}j∈J . The following isomorphism holds

Bonds
(∏
i∈I
Ci,
∏
j∈J
Dj
)
∼=

∏
(i,j)∈I×J

Bonds(Ci,Dj) .

Tensor product Another product-like construction can be given in the
category ChuCors.

Note that if ϕ ∈ Chu(C1, C2), then we can consider ϕ∗ ∈ Chu(C∗2 , C
∗
1 )

defined by ϕ∗L = ϕR and ϕ∗R = ϕL.



Definition 7. The tensor product C1 � C2 of contexts Ci = 〈Bi, Ai, Ri〉
for i ∈ {1, 2} is defined as the context 〈B1 ×B2,Chu(C1, C∗2), R�〉 where

R�
(
(b1, b2), ϕ

)
= ↓2

(
ϕL(b1)

)
(b2).

The properties of the tensor product were shown in [7], together with
the result that ChuCors with � is symmetric and monoidal. Those results
were later extended to the L-fuzzy case in [3]. In both papers, the struc-
ture of the formal concepts of a tensor product context was established
as an ordered pair formed by a bond and a set of Chu correspondences.

Lemma 3. Let (β,X) be a formal concept of the tensor product C1 � C2,
it holds that β =

∧
ψ∈X βψ and X = {ψ ∈ Chu(C1, C∗2) | β ≤ βψ}.

Due to the monoidal properties of � on ChuCors we can add a notion
of n-ary tensor product of n formal contexts �n

i=1Ci of any n formal
contexts Ci for i ∈ {1, . . . , n}. Hence, it is possible to consider a notion of
n-ary bond that we can imagine as any extent of n-ary tensor product.

Definition 8. Let Ci = 〈Bi, Ai, Ri〉 be formal contexts for i ∈ {1, . . . , n}.
A dual n-ary bond between {Ci}ni=1 is an n-ary relation β ⊆

∏n
i=1Bi

such that for all i ∈ {1, 2, . . . , n} and any (b1, . . . , bi−1, bi+1, . . . , bn) ∈∏n
j=1,j 6=iBi it holds that

β(b1, . . . , bi−1, (−), bi+1, . . . , bn) ∈ Ext(Ci) .

Lemma 4. Let {C1, . . . , Cn} be a set of n formal contexts and β be some

n-ary bond between such contexts. Let Dβi be a new formal context de-
fined as 〈Bi,

∏n
j=1,j 6=iBj ,Ri〉 where Ri(bi, (b1, . . . , bi−1, bi+1, . . . , bn)) =

β(b1, . . . , bn) for any i ∈ {1, 2, . . . , n}. Then Ext(Dβi ) ⊆ Ext(Ci).

3 Conjunctive linear logic in FCA

One of the main differences between linear and classical logic is the co-
existence of two different conjunctions in linear logic, in both cases the
underlying semantics is that two actions are possible, or can be executed,
but the difference relies on how these actions are actually performed: on
the one hand, we have the multiplicative conjunction ⊗ (times) which
expresses that both actions will be performed; on the other hand, the
additive conjunction & (with) states that, although both actions are pos-
sible, actually just one will be performed.



3.1 Additive conjunction

The categorical product × on ChuCors plays the role of additive conjunc-
tion &. Recall that the product C1×C2 is defined as 〈B1]B2, A1]A2, R1×2〉
where R1×2(b, a) =

(
(i = j) ⇒ (b, a) ∈ Ri

)
for all b ∈ Bi and a ∈ Aj for

all i, j ∈ {1, 2}.
The semantics of the additive conjunction is that, in order to perform

the action of C1 × C2, we have first to choose which among the two pos-
sible actions we want to perform, and then to do the one selected. And
this is exactly what happens here. From the previous section about the
categorical product of ChuCors, it is known that a concept lattice of a
product of formal contexts is equal to a product of concept lattices of the
input formal contexts. Hence no interaction or parallel action of input
formal contexts occurs in case of the categorical product.

3.2 Multiplicative conjunction and dual bonds

Any dual bond between two formal contexts C1 and C2 plays a role of
multiplicative conjunction ⊗. From the definition of bonds one can see
the parallelism of use of input contexts, where every value in the bond,
as a relation, is from both extents of input contexts.

The existing isomorphism between Chu correspondences and bonds,
and monoidal properties of Chu correspondences which follows from the
fact that Chu correspondences form a category, bonds satisfies all prop-
erties of conjunction.

In the sense of category theory, any dual bond can be seen as a Galois
connection between concept lattices of their input contexts, because of
the categorical equivalence between category ChuCors and the category
of complete lattices and isotone Galois connections.

In [1, 8] one can find that the tensor product is used as multiplicative
conjunction, due to its monoidal properties on category of Chu Spaces or
on any monoidal category in general. Here, in FCA, the tensor product
is a special formal context with nice properties that generates all bonds
between the input formal contexts. Hence tensor product shows all pos-
sibilities how we can connect or use in parallel two formal contexts.

4 Sequent calculus

The idea here is to develop a logic between contexts and, specifically, a
proof theory for this logic.

We will consider the problem of defining a consequence relation |=
which allows for developing formally a sequent calculus between contexts.



Definition 9. Two contexts C and D are isomorphic if their concept lat-
tices are isomorphic.

Definition 10. Given formal contexts C1, . . . , Cn, C, we say that C is a
consequence of contexts C1, . . . , Cn, denoted as C1, . . . , Cn |= C, if C is
isomorphic to a bond between all contexts in the left hand side. Specifically,
C1, . . . , Cn |= C if and only if C is isomorphic to some n-ary bond between
input formal contexts C1, . . . , Cn.

The relation just defined satisfies the properties of closure operator
and, hence, can be considered as a relation of logical consequence between
contexts, since any consequence relation can be viewed as a finitary clo-
sure operator on a set (of sentences or formulas).

Lemma 5. The relation |= above is a consequence relation.

Recall the notion of sequent of Gentzen calculus. Any sequent is of
the form Γ ` ∆ and has the following meaning: from the conjunction of
all hypothesis of Γ follows some formula of ∆. Hence as a conjunction of
all contexts we use some n-ary bond between input contexts.

Without entering into the details, the following sequent rules from
conjunctive linear logic can be proved in terms of this definition.

Axiom rule: As a unary bond we use a context itself

C |= C

Constants rule Due to isomorphism Bonds (C,>) ∼= Ext(C) where > =
〈{�}, {�}, 6=〉 we can write the following rule

C1, . . . , Cn |= C
>, C1, . . . , Cn |= C

⊗-left From the definition of |= and associativity of tensor product, or
of associativity inside of n-ary product, we can write

C1, . . . , Cn−1, Cn, |= C
C1, . . . , Cn−2, (Cn−1 ⊗ Cn) |= C

⊗-right Any dual bond between n-ary and m-ary bonds is an n+m-ary
bond between all input formal contexts

C1 . . . , Cn |= C D1 . . . ,Dm |= D
C1 . . . , Cn,D1 . . . ,Dm |= C ⊗ D



×-left Due to the distributivity of tensor and categorical product on
formal contexts, n-ary bond between C1, . . . , Cn−1, Cn ×D is equal to
product of n-ary bonds between C1, . . . , Cn−1, Cn and C1, . . . , Cn−1,D.
Hence it is easy to use a full relation as the n-ary bond between
C1, . . . , Cn−1,D to obtain the following rule.

C1, . . . , Cn−1, Cn, |= C
C1, . . . , Cn−1, Cn ×D |= C

×-right One of the possibilities here is to add to hypothesis a special
context, product of two singletons >×>.

C1 . . . , Cn |= D1 C1 . . . , Cn |= D2

C1 . . . , Cn |= D1 ×D2

5 Conclusion

We have obtained a preliminary notion of logical consequence relation be-
tween contexts which, together with the interpretation of the multiplica-
tive (resp. additive) conjunction as the cartesian product (resp. bond) of
contexts, enable to prove the correctness of the corresponding rules of the
sequent calculus of the conjunctive fragment of linear logic.

Of course, we are just scratching the surface of the problem of provid-
ing a full calculus since we still need to find the adequate context-related
constructions to interpret the rest of connectives. This is future work.

References

1. S. Abramsky and N. Tzevelekos. Introduction to categories and categorical logic.
Lecture Notes in Physics, 813:3–94, 2011.
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